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Abstract 
This analysis investigates economic impacts of climate changes on Vietnam 
agriculture. The Ricardian approach is applied to ten-year panel data using the Hsiao 
two-step method. Estimates of the Ricardian model suggest heterogeneous impacts of 
climate change. Rising temperature is especially harmful to the Northern Central and 
the Southern region. Shortage of rainfall in spring only causes losses to the Central 
Highlands and Northern region. Rising summer precipitation is extremely harmful. 
Increases in precipitation help to harness the benefit of rising autumn temperature. The 
simulation indicates net agricultural surpluses in the long-run, with the Central 
Highlands being an exception.  
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1. Introduction 
 
 Vietnam is expected to be among the hardest-hit countries by future climate 
changes (Dasgupta, Laplante, Meisner, Wheeler, & Yan, 2009). Likely consequences 
of changing climatic conditions are believed to be serious and present threats to hunger 
eradication, poverty reduction, and sustainable development. The report by the 
Ministry of Natural Resources and Environment (MONRE, 2009) indicates non-
uniform changes in climate patterns. Temperature is predicted to increase faster in 
autumn and winter over the country. While the Northern region of the country will 
experience shortage of rainfall in spring, the Southern region will suffer from lower 
precipitation for winter and spring. These changes are expected to affect the agriculture, 
especially the Southern agriculture. Climate impact assessment for Vietnam is, 
therefore, important for government adaptation policy. 

Previous analyses of climate impacts on Vietnam agriculture and on sub-
national regions indicate nonlinear impacts of rising temperature and precipitation. 
Simulation of climate change by Trinh (2018) presents net losses due to rising 
temperature and rainfall in the wet season.  Le Thi Diem Phuc, Vu, and Xuan (2015) 
estimated net losses of VND 180,000 to 1,600,000 per hectare between 2050 and 2100. 
These analyses are subject to limitations due to the use of inappropriate climate data 
and lack of adaptation (Le Thi Diem Phuc et al., 2015), aggregation bias (Trinh, 2018), 
and the endogeneity of irrigation (Trinh, 2018; Le Thi Diem Phuc et al., 2015). 

This study makes use of high-quality data from the Vietnam Access to 
Resources Household Surveys. The Probabilistic Data Record Linkage method is 
applied to generate a ten-year panel on crop income which is used as the dependent 
variable in the Ricardian analysis. Climatic and geographic data with high resolution 



 
 

are extracted to match with households’ location. The Ricardian model is estimated on 
the panel using the Hsiao two-step method. 

This Ricardian analysis makes a threefold contribution to the existing literature 
on climate impact assessment. It is one of the few Ricardian analyses using micro-
level panel data which is expected to avoid aggregation biases and gain robust 
estimates. In contrast to most previous Ricardian analyses ignoring the endogeneity of 
irrigation, we take endogeneity of irrigation into account using the control function 
method. We demonstrate that Ricardian analyses, which fail to account for endogenous 
irrigation, overstate the role of irrigation and climate change impacts. We consider 
heterogeneous climate conditions by proper classification of seasons and regions. This 
allows better insights into how variations of climate conditions affect regional 
agricultural production. The simulation of climate impacts indicates short-term 
negative impacts of projected climate change on Vietnam agriculture, with the Central 
Highland being the most affected. Variations in temperature and rainfall produce 
seasonal effects. 

 
2. Literature Review 

 
 Agriculture is considered to be most affected by climate change as it is directly 
exposed to climate elements. Crop yields show a strong correlation with temperature 
change and with the duration of heat or cold waves (Yohannes, 2016; Hoffmann, 2013). 
Changes in precipitation patterns enhance water scarcity and associated drought stress 
for crops and affect irrigation cost. On a global scale, climate change currently 
decreases the yield (and income as a consequence) of rice, maize, wheat and potatoes 
(Yohannes, 2016). While climate change is expected to be harmful, estimated impacts 
of climate change are largely dependent on the impact horizons, the methods applied, 
and types of data used. This section outlines the key features of climate change impact 
assessments in terms of economic theory, assessment methods, and data used. 
 Estimates of climate variations on agriculture production are subject to biases 
depending on the uncertainty of climate change scenarios, regions of study and 
assessment models. Studies investigating impacts of climate change on agriculture can 
be divided into two different modelling approaches: An agriculturally oriented 
approach and an economically oriented approach. The former approach focuses on 
modelling the responses of crops to climate variations (also known as crop model) 
while the latter considers the economic responses to changes in crop yield (Francisco 
& Maria, 2015). Recent reviews by Ewert et al. (2015) and by Francisco and Maria 
(2015) provide a comprehensive examination of these approaches to assess the impacts 
of climate change on agricultural production. 
 Dynamic, process-based crop models (also known as the production function 
approach) have been developed since the 1960s to better understand and manage crops. 
These models give insights into how crops grow in response to weather, soil and 
management conditions (Lobell, Schlenker, & Costa-Roberts, 2011). Application of 
crop models can be seen in several studies. Lobell et al. (2011) indicated that global 
maize and wheat production would decline at a rate of 3.8 and 5.5 percent, respectively, 
relative to a scenario without climate change. Leif Christian et al. (2006) shown that 
the changes in productivity of crops and livestock in Africa in the period 1961-2003 
were associated with changes in climate conditions. The authors suggested changes in 
crop selection and storage strategies to respond to climate uncertainty. Wolfram and 
Michael (2009) highlighted that yields for corn and soybeans in the United States are 
expected to decrease at least 30-46% by the end of the 21st century under the slowest 



 
 

warming scenario. The differences in geographic locations affect the estimated 
impacts of climate change on agriculture. Aggarwal and Mall (2002) shown positive 
effects of climate change on rice production in India, irrespective of the various 
uncertainty in climate scenarios. 

Albeit, studies using the production function approach share an inherent 
shortcoming and tend to overstate the damage (Fezzi & Bateman, 2015; Mendelsohn, 
Nordhaus, & Shaw, 1994). This bias arises due to the omitted variety of adaptations, 
and substitutions of old and new activities that farmers take in response to changing 
climate and other environmental conditions. Figure 1 shows the hypothetical output 
values of four different activities as a function of a single climate variable to illustrate 
the nature of the bias. 

Assuming that the production functions produce accurate estimates of climate 
impacts on crops, when temperature increase from T1 to T2, income of crop A 
decreases from B to C. As the production function does not allow for crop substitution, 
value of crop A will decrease to the point F when temperature increases further, to T3. 
In reality, farmers may react to changes in climate condition by switching into new 
crops (such as crop B) that are more lucrative given changes in climate. In addition, 
evaluation of the impacts of climate variations and adaptation measures on agricultural 
production often requires crop simulations for periods of at least 15 years (Van Wart, 
Kersebaum, Peng, Milner, & Cassman, 2013). Another disadvantage of the process-
based crop models is that they require a large amount of input data for simulation as 
well as frequent time data. Economic models only require final yields in response to 
management practices and climate conditions. 

 
Figure 1.  Bias in Climate Impact Assessment in Production Function Analyses 

 
 
 
 
 
 
 
 
 

 
 
 
 

The economically oriented approach can be divided into two approaches: The 
structural economic approach and the spatial-analogue approach (Francisco & Maria, 
2015). The structural economic approach simulates crop and farmer responses based 
on the economic relationships suggested by theory (Adams, 1999). This approach 
includes changes in land values within the models so that adaptation responses of 
economic units are taken into account. Additionally, this approach provides an explicit 
representation of the causal effects between the agricultural sector and climate change. 
However, the main weakness of this approach is that it requires cumbersome data 
collection and model construction. 

The structural approach can be classified into six methodologies corresponding 
to geographical scales. These include general equilibrium models, partial equilibrium 
models and basic linked system models at a global scale, and general equilibrium 
models, partial equilibrium models and farm economic models at a regional scale. 

Crop A 
Crop B 

Crop C 
Retirement homes 

        T1       T2        T3   T4 



 
 

Amongst the six categories, farm economic models are important tools for evaluating 
the climate impacts because they focus on local adaptation options that would improve 
production and farm income in the face of changing climate. However, farm economic 
models have two main disadvantages. First, they ignore the global scale of climate 
change which may affect the local climate pattern. Second, these models do not 
account for climate-induced price changes. 

The spatial-analogue approach is based on econometric techniques used to 
analyse spatial production patterns. Information collected from farms across a wide 
range of production conditions is used to simulate how future changes in climate may 
affect profit. Within this approach, adaptations are embedded in the information 
collected regarding the farmer’s behavior (Adams, 1999), which is the main difference 
between this approach and the structural economic approach. Mendelsohn and Dinar 
(2003) applied the spatial-analogue approach to US agriculture. The results show that 
the value of irrigated cropland is not sensitive to precipitation while it increases with 
temperature. Massetti and Mendelsohn (2014) shown the sensitivity of Southern 
Europe farms to global warming with losses ranging from 9% to 13% per Celsius 
degree by 2100. 

Limitations of the spatial-analogue approach are associated with its 
assumptions. It produces aggregate results that put obstacles for the measurement and 
proposal of adaptation techniques. Particularly, the farmer’s adaptation in terms of 

crop choice is considered ‘black box’. Thus, one can know neither how the crop 
substitution takes place nor how this adaptation affects farm profit. The assumption 
that agricultural prices do not respond to changes in agricultural production resulting 
from climate change ignores the future impacts of weather-induced price changes on 
supply and demand. Nevertheless, several studies have applied this approach to 
evaluate the economic effects of climate change on agricultural production and farmers’ 

welfare. 
 Within the spatial-analogue approach, the Ricardian approach is a model that 
uses cross-sections to analyze climate impact. The model was developed from the 
initial studies on land values reflecting net productivity by David Ricardo (1772-1823). 
If land markets are efficient, land value is equal to the present value of net revenue 
from farm-related activities (Mendelsohn et al., 1994) when farmers put their farmland 
to the most profitable use given a set of conditions and constraints (Dall'erba & 
Domínguez, 2016). Mendelsohn et al. (1994) developed this method to evaluate the 
impact of climate change on US agriculture. 

The Ricardian approach has been applied in several studies of climate change 
impacts on agriculture. Dinar (1998) employed the Ricardian approach to analyze the 
climate sensitivity of Indian marketed agriculture. Maddison (2000) used a Ricardian 
model for England and Wales. The results show the importance on agriculture of frost 
days in winter. Maddison, Manley, and Kurukulasuriya (2007) evaluated the impact 
of climate change on African agriculture using farm-level data from 11 African 
countries in 2003. The authors indicated that African agriculture is particularly 
vulnerable to climate change even with full adaptation. However, the extent of losses 
due to spatial climate variations are different across regions. While most parts of Africa 
are severely affected by climate change, Ethiopia and South Africa are hardly affected 
at all. 

While assessed impacts vary across regions, estimated impacts from Ricardian 
models are also sensitive to types of data used. Numerous impact assessments have 
used aggregate data of county or regional levels including the United States (Massetti 
& Mendelsohn, 2011; Deschenes & Greenstone, 2007; Schlenker, Hanemann, & 



 
 

Fisher, 2006; Mendelsohn et al., 1994), Africa (Seo, Mendelsohn, Dinar, Hassan, & 
Kurukulasuriya, 2009), Brazil (Timmins, 2006), Germany (Lippert, Krimly, & 
Aurbacher, 2009). Imbs, Ravn, and Rey (2005) highlighted that in nonlinear 
specifications, the aggregation process typically produces biased estimators and 
predictions despite using appropriate weights. Fezzi and Bateman (2015) compared 
the results from Ricardian models for farm-level and aggregated data on Scottish farms. 
The results from farm-level data show significant nonlinear interactions between 
temperature and rainfall. These interactions disappear in the model with aggregated 
data indicating distorted estimates and predictions. The results highlight the 
importance of using microdata for climate impact assessment. 

There is also a rich literature discussing the strengths and weaknesses of the 
Ricardian technique. In comparison with the traditional production function approach, 
the Ricardian technique can measure long-run effects of climate change. It is also 
applicable to capture adaptations and substitutions that farmers have already taken in 
response to changing climate conditions. As depicted in Figure 1, farmers switch from 
crop A to crop B when temperature increases from T2 to T3. Therefore, the Ricardian 
approach does not measure climate impact on a single crop. Rather, it focuses on the 
economic impact of climate variation under full adaptation by exploiting data on 
agricultural production from cross-sections. 

The most noticeable weakness of the Ricardian model is that it does not capture 
future technical change to either crops or farming techniques which have effects on 
farm values (Massetti & Mendelsohn, 2014). Both the Ricardian model and the farm 
economic models do not account for the effects of climate change on prices. Therefore, 
farm economic models, as well as the Ricardian approach, should be extended to 
capture market feedback in the model. Ricardian studies using cross-sectional data also 
suffer from omitted variable bias (Fezzi & Bateman, 2015; Massetti & Mendelsohn, 
2011). Panel models can correct for the omitted variable bias by absorbing possible 
time-invariant unobserved heterogeneity such as soil characteristics. By using panel 
data, one can also overcome the fixed price assumption of the standard Ricardian 
model as long as the panel is long enough for price adjustments to take place in the 
markets. 
 Vietnam is likely to be among the hardest-hit countries by climate change and 
uncertainty (Dasgupta et al., 2009). The fast and steady developments in the 
agricultural sector and poverty reduction may be under threat due to climate variations 
and extreme events. The heavy dependence on agriculture of small-scale farmers 
makes Vietnam agriculture more vulnerable to changing climate conditions. There has 
been, however little expertise on how the smallholding agriculture will be affected by 
future climate change. To our knowledge, there have been two studies using the 
Ricardian approach to evaluating the economic impact of climate change in Vietnam. 
These include Le Thi Diem Phuc et al. (2015), and Trinh (2018). 

Le Thi Diem Phuc et al. (2015) used cross-sectional data from households in 
the Mekong River delta. The results show the nonlinear effects of climate change on 
net crop income. Rising temperature is shown to be harmful to agriculture while 
increases in rainfall are beneficial. However, this Ricardian analysis has several pitfalls 
which bias the estimates. The use of cross-sectional data gives little insights due to 
omitted variable bias (Francisco & Maria, 2015). In a standard Ricardian model, 
farmers ake climate as given (Mendelsohn et al., 1994), not as shocks. The use of 
inappropriate climate data by Le Thi Diem Phuc et al. (2015) may have downward or 
upward biased the estimated effects depending on the nature of weather change in the 
observed years. Furthermore, because the authors collected data on cross-sections 



 
 

from a homogeneous region, any interpolation from the analysis is of limited value 
due to lacking of adaptation. 

Trinh (2018) overcame these shortcomings of the previous Ricardian study by 
using the Hsiao two-step method on micro-level panel data generated from Vietnam 
nationally representative surveys. He considered long-term impact of climate change 
by using climate normals with a resolution of 50 square kilometres. The results show 
heterogeneous impacts on different regions although there exist negative impacts of 
higher temperature on all regions in the long-run. Increases in precipitation are harmful 
to only irrigated farms in the Central and in the North. The total impact of climate 
change is projected to be negative, with losses ranging from USD 30 to USD 87 per 
square meter. 

Despite the appropriate method being applied to panel data, the analysis by 
Trinh (2018) is subject to limitations. Although the study allowed for nonlinear effects 
of climate, the assumption on the separability of climate effects is questionable. 
Particularly, the marginal effects of temperature were captured regardless of potential 
interactions between temperature and precipitation. We argue that temperature effect 
can be mitigated or enhanced by different levels of rainfall. In addition, the analysis 
considered irrigation exogenous to climate change which is problematic in the 
Ricardian approach. Furthermore, Vietnam agriculture is a diverse picture with 
different types of crop production and different agro-ecological conditions. The 
grouping of farms and seasons by Trinh (2018) probably underestimated the 
heterogeneity of climate impacts. 

Based on the review, some gaps need to be filled to provide better insights into 
climate change impacts on Vietnam agriculture. First, the application of the Ricardian 
approach using micro-level panel data will extend the literature on climate change 
impact. Second, this analysis is expected to better control for endogeneous irrigation 
in order to reveal the true impact of irrigation and of climate variables on the 
agriculture. Third, this will be the first Ricardian analysis in Vietnam which allows for 
a more diverse agro-ecological conditions to underpin the heterogeneous impacts of 
climate change in Vietnam. 

 
3. Research Method and Model Specification 

 
This section outlines the conceptual framework of the Ricardian approach to 

assessing the economic impact of climate change on land values. The estimation 
procedure of the Ricardian model using the Hsiao two-step method for panel data is 
presented. 

 
3.1. The Ricardian Approach to Valuing Economic Impact of 
Climate Change 
 The basic hypothesis of the climate impact assessment is that climate shifts the 
production function for crops. The approach was conceptualized by Mendelsohn et al. 
(1994) to measure the implicit value of climate change in US agriculture. The intuition 
of the Ricardian approach is as follow: if future climate conditions in location A were 
analogous to the current climate in location B, then the future behavior of farmers in 
location A would resemble the current behavior of farmers in location B, ceteris 
paribus. Therefore, information on agricultural production from cross-sections 
includes the implicit value of climate change. The Ricardian approach assumes the 
farmer is always looking to maximize production income, subject to a set of exogenous 



 
 

conditions of his or her farm. Specifically, the farmer chooses the crops and inputs for 
each unit of land that maximizes profits: 

𝑀𝑎𝑥𝜋 =   𝑃𝑖𝑄𝑖(𝐾𝑖 , 𝐸𝑖  ) − 𝐶𝑖(𝑄𝑖 , 𝑊, 𝐸)    (1) 
Where л is the net annual income, Pi is the market price of crop i, Qi is the production 
function of crop i, Ki is a vector of production inputs other than land, Ei is a vector of 
exogenous environmental factors such climate and geographic conditions. The 
relationship between climate factors and production function is expected to be 
nonlinear. Ci is the production cost of crop i and is also expected to have nonlinear 
relationships with climate. 
 If land (Li) is a distinct input (Mendelsohn et al., 1994) with heterogeneous 
cost (PL), then the profit function of the farmer is specified as: 

𝑀𝑎𝑥𝜋 =   𝑃𝑖𝑄𝑖(𝐾𝑖 , 𝐸𝑖  ) − 𝐶𝑖(𝑄𝑖 , 𝑊, 𝐸) −  𝑃𝐿𝑄𝑖    (2) 
 Under the assumption of perfect competition for land, free entry and exit will 
ensure excess profits are driven to zero: 

𝑃𝑖𝑄𝑖(𝐾𝑖 , 𝐸𝑖  ) − 𝐶𝑖(𝑄𝑖 , 𝑊, 𝐸) – 𝑃𝐿𝑄𝑖 =  0    (3) 
  Solving the above equation gives: 

𝑃𝐿 = [𝑃𝑖𝑄𝑖
∗(𝐾𝑖 , 𝐸𝑖  ) − 𝐶𝑖(𝑄𝑖

∗, 𝑊, 𝐸)]/𝐿𝑖     (4) 
 The above function indicates that land rents will be equal to net income per 
unit of land. This Ricardian function is a locus of most profitable crops with respect to 
each exogenous variables such as temperature or rainfall. Therefore the Ricardian 
function is not a response function of any single crop (Wang et al., 2009). It is 
estimated across crops and inputs under different climatic conditions. Changes in these 
optimal levels will be reflected in changes in annual cost of land (rents). The land value 
(VL), is then calculated by the present value of net future income flows from land (PL): 

𝑉𝐿 =  ∫ 𝑃𝐿 𝑒−𝑟𝑡𝑑𝑡 =  ∫⟦[𝑃𝑖𝑄𝑖
∗(𝐾𝑖 , 𝐸𝑖  ) − 𝐶𝑖(𝑄𝑖

∗ , 𝑊, 𝐸)]/𝐿𝑖 ⟧ 𝑒−𝑟𝑡𝑑𝑡  (5) 
Where r is the discount rate, t is time.  

Under the assumption of full adaptation given climate, land prices have 
attained the long-run equilibrium that contains information on the economic impact of 
climate change. 

 
3.2. The Two-Stage Hsiao Method for Panel Data 
 For a simpler illustration, we group independent variables into: a vector of 
time-varying variables X, a vector of time-invariant control variables Z, and a vector 
of climate variables C and their square terms. The Ricardian model takes the following 
form: 

𝑉 = 𝑓(𝑋, 𝑍, 𝐶)       (6) 
Traditionally, the Ricardian model is estimated across cross-sections in which 

impact of climate change is embedded in farm values: 
𝑉𝑖  =  𝑋𝑖𝛽 + 𝑍𝑖𝛾 + 𝐶𝑖𝜑 + 𝑢𝑖       (7) 

Where i varies across spaces (such as county or individual farmer), β, γ, and φ are the 

coefficients to be estimated. When data are available for different years, one can use 
the repeated cross-sections to estimate the following Ricardian model: 

𝑉𝑖𝑡 =  𝑋𝑖𝑡𝛽𝑡 + 𝑍𝑖𝛾𝑡 + 𝐶𝑖𝜑𝑡 + 𝑢𝑖𝑡      (8) 
 In the above equation, the estimated coefficients are allowed to vary over time. 
Massetti and Mendelsohn (2011) shown that the pooled regression using repeated 
cross-sections produces inconsistent estimates. Climate change is a long-term trend. 
Different estimates of climate impact for different years seem not to be relevant. The 
Hsiao two-step method allows the estimates of time-invariant variables to be constant 
over time and provides robust estimates of climate impact on land value. Therefore, 
the correctly specified Ricardian model using repeated cross-sections is: 



 
 

𝑉𝑖𝑡 =  𝑋𝑖𝑡𝛽 + 𝑍𝑖𝛾 + 𝐶𝑖𝜑 + 𝑢𝑖𝑡      (9) 
The Ricardian model for panel data can be estimated by two ways. One is to 

pool the entire data set to estimate a single stage using the above equation. The second 
approach is to apply the Hsiao two-step method. The details of the Hsiao two-step 
method are as follows: 

In the first step, land value is regressed on time-varying variables using a fixed 
effects method: 

𝑉𝑖𝑡 =  𝑋𝑖𝑡𝛽 + 𝜀𝑖𝑡      
 (10) 

Where εit is the resulting error term. The fixed effects method applied to the first step 
rules out time-invariant unobserved heterogeneity which is correlated with both input 
and agricultural output. The vector β is, therefore, robust estimates of time-varying 
variables. To control for changes in economic environment which may have effects on 
agricultural production in the studied period, the estimation of equation (10) includes 
time-fixed effects by adding a set of time dummies. 

In the second step, the time-mean residuals obtained from the first step are 
regressed upon climate and other time-invariant control variables.  

𝑉�̅� − 𝑋�̅��̂� = 𝑍𝑖𝛾 + 𝐶𝑖𝜑 + 𝑢�̅�     (11) 
 Following De Salvo, Raffaelli, and Moser (2013), this analysis uses the log of 
net crop income as the dependent variable as it has more predictive power compared 
to the linear model. Some of the independent variables are also in natural logarithm 
form. Seasonal temperatures and rainfalls are introduced to the model to capture 
seasonal effects. This Ricardian model also introduces the interaction terms between 
temperature and rainfall. The estimation of Equation (11) uses household’s farmland 

as weight for two reasons. First, the estimate of climate change from households with 
large crop production is more precise than from households with small production. 
Second, using farm size as weights can correct for heteroscedasticity which is 
problematic in econometric modelling (Deschenes & Greenstone, 2007). The 
endogeneity of irrigation considered using the control function method developed by 
Wooldridge (2015). 
 The welfare impact of climate change on each of the seven regions is obtained 
by calculating the difference between the land value under the new climate scenario 
(C1) and the land value under the current climate (C0) using regional agricultural land 
as weight. 

𝑊𝑖 = [𝑉𝑖(𝐶1) − 𝑉𝑖(𝐶0)] ∗ 𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝑙𝑎𝑛𝑑𝑖        (12) 
 

4. Data 
 

 This analysis exploits the high-quality data from the Vietnam Access to 
Resources Household Surveys (VARHS). These datasets contain rich information on 
income activities and access to resources by rural households in Vietnam. Particularly, 
the surveys collected details on crop production of 20 crops that have been produced 
across regions. The minimum sample size of the surveys is more than 2,000 
households. The Probabilistic Data Record Linkage method applied to these datasets 
produces a ten-year unbalanced panel of 2,341 households or 7,793 year-households. 
Following Wang et al. (2009), Seo et al. (2009), and Kurukulasuriya (2007), this study 
uses net crop income per square meter as a proxy for land value in Equations (10), (11), 
and (12). The words land value and net crop income are hereafter used interchangeably. 
To ensure the comparability, economic variables are converted to constant 2005 VND. 



 
 

While cross-sectional Ricardian analyses suffer from omitted variable bias, 
assessments using panel data is also subject to biases due to omitting time-varying 
variables. Rising population may put pressure on land use efficiency (Mendelsohn et 
al., 1994). Increases in agricultural wages may have an impact on household 
agricultural production. This Ricardian study considers these sources of bias by 
incorporating socio-economic variables. The VARHS surveys on the commune level 
represent a rich set of data on commune-level characteristics including men and 
women agricultural wages. This wage data is combined with household data by 
applying the same Probabilistic Data Record Linkage Method. Data on population 
density come from Vietnam Government Statistical Office. 
 This study uses monthly averages of temperature and rainfall for the period 
1970-2000. The climate data with a high resolution of one square kilometre are derived 
from Worldclim version 2.0. Climate and agricultural production may vary across 
latitudes (Mendelsohn et al., 1994). We extract data on elevation with the same 
resolution on a commune-level basis using free spatial data from DIVA-GIS website. 
These climate and topographical data are extracted with the kind assistance of Ha 
Manh Thang at the Environmental Research Institute of the University of Waikato. 
Because we use climate data with high resolution, the combination of climate and 
household data produces barely any errors. We do not include climate data for twelve 
months in the analysis for the reason that there is multicollinearity between monthly 
precipitations and between monthly temperatures. Instead, we construct seasonal 
temperatures and rainfalls based on season classification of the Ministry of Natural 
Resources and Environment (MONRE, 2009). Table 1 presents a brief definition of 
the variables while Table 2 provides the regional averages of the data used. The data 
description highlights the heterogeneity of climate and socio-economic conditions 
which have impacts on agricultural performance across regions. 
  



 
 

 
Table 1: Variable Definition 
Variable   Measurement 
Dependent variable  
income_meter 
(in log form) 

Net crop income per square meter 
= (total output value-total cost)/farmland 
Thousand VND/square meter (2005 prices) 

Household characteristics  
hh_size Number of household member (person) 
head_sex Gender of household head, binary (1 = male) 
head_edu Formal schooling of household head (year) 
head_age Age of household head (year) 

Extension contacts 
Number of extension contacts in the last two years 
(times) 

Farmland characteristics  
No_plots Number of separate farmland plots 
Farm_size Farm size (square meter) 
irrigation % of farmland irrigated 
Socio-economic 
characteristics  
Woman agricultural wage Thousand VND/female workday in agriculture 
Men agricultural wage Thousand VND/male workday in agriculture 
Population density Thousand person/square kilometre 
Topographic characteristics  
Elevation Meter 
Climate variables  
Winter_tem Winter monthly temperature (Celsius degree) 
Spring_tem Spring monthly temperature (Celsius degree) 
Summer_tem Summer monthly temperature (Celsius degree) 
Autumn_tem Autumn monthly temperature (Celsius degree) 
Winter_pre Winter monthly precipitation (millimetre) 
Spring_pre Spring monthly precipitation (millimetre) 
Summer_pre Summer monthly precipitation (millimetre) 
Autumn_pre Autumn monthly precipitation (millimetre) 
Regional dummies Northeast, Northwest, Northern Central, Southern 

Central, Central Highland, South (Red River delta 
as reference) 

Time dummies 2008, 2010, 2012, 2014, 2016 (2006 as reference) 
 
  
 
 
 
 
 
 
 



 
 

 
Table 2: Sample Means by Region 

Group Variable Red 
River  Northeast Northwest Northern 

Central 
Southern 
Central 

Central 
Highland South Total 

Agricultural income Income_meter 3.67 3.78 1.75 2.30 1.69 5.35 2.81 3.12 
Household 
characteristics 

hh_size 4.31 4.09 5.42 4.27 4.23 4.88 4.34 4.53 
head_sex 0.79 0.79 0.91 0.84 0.74 0.86 0.77 0.82 
head_edu 6.95 7.34 4.25 7.44 6.03 6.42 5.29 6.25 
head_age 51.74 53.15 47.25 53.43 55.53 47.91 55.64 51.65 

Farmland 
characteristics 

no_plots 5.35 6.58 5.30 5.38 4.40 3.41 3.00 5.00 
farm_size 2,399 4,353 11,861 6,419 5,818 16,384 18,636 8,350 
Irrigation 0.92 0.76 0.42 0.73 0.76 0.65 0.89 0.74 

Social-economic 
conditions 

Extension contact 1.05 1.61 1.55 1.91 1.58 1.21 1.57 1.43 
Men agricultural wage  108.04 82.35 158.45 81.52 89.31 91.65 95.47 105.45 
Woman agricultural wage 101.16 75.31 156.89 78.34 74.69 83.03 73.23 97.28 
Population_density 1,825.77 382.19 67.27 183.94 150.80 117.45 323.82 595.26 

Climate conditions Winter_tem 17.50 16.98 16.04 18.65 21.74 21.28 25.88 18.99 
Spring_tem 23.71 23.31 22.64 24.25 26.44 24.77 28.54 24.40 
Summer_tem 28.86 28.07 25.68 28.95 28.97 24.15 27.96 27.53 
Autumn_tem 24.53 24.14 22.07 24.61 25.60 22.82 27.24 24.20 
Winter_pre 20.35 26.65 22.07 32.16 112.71 20.07 18.09 33.18 
Spring_pre 103.72 105.78 117.30 67.91 45.16 110.25 84.83 95.55 
Summer_pre 287.29 276.80 351.89 167.68 111.62 210.29 206.32 249.33 
Autumn_pre 154.96 149.29 94.19 205.07 398.44 205.54 211.38 187.27 

Topographics Elevation 7.89 61.40 601.52 49.28 78.93 569.37 2.29 202.32 
 



 
 

5. Estimation Results 
 One criticism that plagues the Ricardian approach to climate impact 
assessment is the omitted variable bias (Francisco & Maria, 2015; Deschenes & 
Greenstone, 2007). This study overcomes the omitted variable bias in the Ricardian 
analysis by applying the fixed effects model on household panel data. Because soil 
characteristics such as soil quality and slopes are constant over time, the fixed effects 
model applied to the first step of the Hsiao method will purge out the effects of soil 
characteristics on agricultural performance. If we assume that unobserved 
heterogeneity across households is also time-invariant, the estimates of the fixed 
effects model for observed characteristics are robust. 
 Most Ricardian analyses have treated irrigation as an exogenous variable by 
either ignoring it or regressing separate equations for irrigated and rainfed farms. 
Dall'erba and Domínguez (2016), Wang et al. (2009), and Schlenker, Michael 
Hanemann, and Fisher (2005) found smaller climate impact on irrigated farmland than 
on rainfed farms. By treating irrigation as an exogenous variable, such estimates of 
climate impact are subject to biases. Irrigation is an adaptation practice to climate 
change. It is, therefore, reasonable to expect a confounding impact of irrigation. In 
addition, economists often classify irrigation into a binary choice. Vanschoenwinkel 
and Passel (2018) show that the climate response of irrigated and rainfed farms also 
differs according to how irrigation is defined. The authors call for better irrigation 
measures in Ricardian analyses of climate change. 

This analysis attempts to overcome the above two shortcomings of the 
Ricardian literature regarding the irrigation variable. Because of inherent land 
fragmentation in Vietnam, each household has several plots with different irrigation 
conditions. We constructed an irrigation variable which represents the percentage of 
household’s farmland irrigated to better investigate the real impact of irrigation. We 
defined irrigation as endogenous of climate change and applied the control function 
method developed by Wooldridge (2015). 

Using the control function method, irrigation is first regressed on its instrument, 
alongside other exogeneous explanatory variables. Estimated errors obtained from this 
step are then plugged in the Ricardian model, alongside irrigation. If the coefficient of 
the error term is not statistically significant, irrigation is considered exogeneous. The 
main task of the control function method is to identify an instrument that is correlated 
with irrigation but does not affect agricultural income. From the dataset at hand, we 
found irrigation is positively correlated with household’s rice sold proportion as rice 

production requires good irrigation condition. However, as rice accounts for a small 
portion of marketed agricultural surplus, rice market participation is not correlated 
with income per meter. Therefore, rice sold proportion of households was used as the 
instrument for irrigation. Because the F-statistics from the control functions are larger 
than 10, the rule of thumb confirms the relevance of our control functions for this study. 

Table 3 reports the Hsiao estimates of the time-varying control variables while 
Table 4 represents the estimates of climate variables and other time-invariant controls 
under different endogenous irrigation hypotheses. The first columns in the two tables 
are the estimates for control and climate variables under the assumption of 
endogeneous irrigation using the control function method proposed by Wooldridge 
(2015). The second columns in the two tables are the estimated parameters of 
corresponding variables when irrigation is treated as an exogenous variable while the 
third columns assume irrigation as omitted exogeneous variable. 

 



 
 

Table 3: The Hsiao Method Estimation of Step 1 

Income_meter (log form) 
Hypothesis of Irrigation 

Endogeneous Exgogeneous 
Omitted 

Exogeneous 
irri_error_sum 0.031 - - 
irrigation 0.186** 0.207** - 
hh_size 0.039** 0.038** 0.039** 
head_sex -0.015 -0.016 -0.02 
head_edu 0.002 0.002 0.005 
head_age 0.001 0.001 0.001 
no_plots 0.038** 0.038** 0.039** 
log_farm_size -0.536** -0.533** -0.555** 
extension_contact 0.018** 0.018** 0.019** 
log_men_agricultural_wage -0.121 -0.121 -0.097 
log_woman_agricultural_wage 0.033 0.033 0.01 
log_population 0.004 0.005 0.054 
I_2008 0.704** 0.704** 0.55** 
I_2010 0.125* 0.127* 0.089 
I_2012 -0.047 -0.046 -0.076 
I_2014 0.151** 0.153** 0.11 
I_2016 0.221** 0.221** 0.193** 
_cons 4.768** 4.731** 4.785** 
R2 0.17 0.17 0.15 
N 7,532 7,532 7,793 
legend: * p<0.05; ** p<0.01 

 
Comparing the last two columns gives a sense of omitted variable bias. When 

irrigation is considered an omitted exogenous variable, estimates of most time-varying 
controls and climate variables are larger in magnitude than when we take irrigation as 
an exogenous explanatory variable. This indicates potential biases in Ricardian 
analyses which ignore irrigation. The estimates of irrigation variable reveal something 
interesting. In the second column of Table 3, the estimate of irrigation is 0.207 and 
statistically significant at 1% level. Therefore, if we consider irrigation exogeneous in 
the face of climate change, we can conclude that irrigation is truly a good response 
which increases agricultural value. The control function method estimate reported in 
Column 1 of Table 3 shows a smaller estimate for irrigation. The interpretation of the 
Hsiao two-step Ricardian model is, therefore, based on the estimation of the control 
function method reported in the first columns of the two tables. 

While most household characteristics are not statistically significant, 
household size shows a positive impact on net crop income. Household size is a good 
measure of family labour for agricultural production. Therefore, the sign and statistical 
significance of this variable is as expected. Farmland characteristics are strongly 
correlated with agricultural income. The interesting finding is that while the number 
of farmland plots (or land fragmentation) is correlated with higher income, farm size 
has a negative impact on net income per land unit. The estimate of farm size (in 
logarithm form) is -0.536 and statistically different from zero indicating a 0.536 
percentage decrease in net income due to a one-percentage increase in arable land. The 
rationale behind this is the land fragmentation economics in Vietnam. Small-scale 



 
 

farmers tend to be more productive than large-holding farmers (Barrett, Bellemare, & 
Hou, 2010; Van Hung, Macaulay, & Marsh, 2007).  

Changes in the local socio-economic environment are found to influence 
agricultural income. Estimates of extension contacts in Table 3 are positive and 
statistically different from zero at 1% level indicating a 0.018% net return to extension 
services. Albeit insignificant, growing population is associated with higher crop 
income. Changes in the macro-economic environment in the period 2006 - 2016 are 
found to be the most important factors accounting for increases in farm value. 
Estimates of time dummies for 2008, 2010, 2014 and 2016 are statistically significant. 
The removals of export barriers to rice in 2009, and increases in agricultural supports 
(OECD, 2015) contributed to nearly a 0.125% return to agricultural income in 2010, 
and more than 0.221% return in 2016. 

Column 1 of Table 4 shows the estimates of climate variables and other time-
invariant controls in step 2 of the Hsiao method under endogeneous irrigation 
assumption. Latitude is negatively correlated with land value. A one-meter increase in 
elevation results in a 0.001% decrease in net crop income. Estimates of regional 
dummies for the Northeast, Northern Central, Southern Central are statistically 
negative. Particularly, the estimate for Southern Central is -2.317 indicating a 2.3% 
lower income per square meter of Southern Central farmers in comparison with their 
counterparts in the Red River delta. The Northwest and the Central Highlands are 
shown to be better off as the estimates for regional dummies are positive. The estimate 
for the South region dummy is negative (-0.374) but not statistically different from 
zero. Therefore, one can conclude the Red River delta in the North and the Mekong 
River delta in the South have the same agricultural performance in terms of agricultural 
income per farmland unit. 

Our variables of interest in the Ricardian analysis are the climate variables and 
their interaction terms. At the sample mean of 19°C, rising winter temperature is 
shown to have a negative impact on net income although the estimates for winter 
temperature and its squared terms are not statistically significant. Particularly, 
increases in temperature in regions with warmer winter are harmful to the development 
of rice in early stage and are associated with higher irrigation cost due to evaporation. 
Moreover, this is the most important season when most fruit trees in the South are 
blossoming. Increases in temperature reduce the fruiting rate. This finding is contrary 
to the analysis by Trinh (2018) which shows the positive impact of rising temperature 
in the dry season.  

Net agricultural income is nonlinearly correlated with higher temperatures in 
the wet season. Estimates of spring (March to May), and summer (June to August) 
temperatures, and their squared terms, are statistically different from zero. The optimal 
spring temperature is 17.8°C while the sample mean is 24.4°C. Rising temperature in 
spring is harmful to crop development and increases cost for irrigation. Likewise, the 
optimal summer temperature is 28.4°C. Because the regional means of summer 
temperatures are around this optimal level, further increases in summer temperatures 
are expected to bring agricultural losses. However, increases in autumn temperature 
(September to November) are beneficial for agricultural production. 
  



 
 

 
Table 4: The Hsiao Method Estimation of Step 2 

 

Income_meter (log form) 
Hypothesis of irrigation 

Endogeneous Exgogeneous 
Omitted 

Exogeneous 
Winter_tem -0.670 -0.676 -1.012* 
square_Winter_tem 0.012 0.012 0.019* 
Spring_tem 2.351** 2.328** 2.952** 
square_ Spring_tem -0.066** -0.065** -0.078** 
Summer_tem 1.877** 1.836** 1.932** 
square_ Summer_tem -0.033** -0.032** -0.034** 
Autumn_tem -2.885** -2.810** -2.809** 
square_ Autumn_tem 0.087** 0.085** 0.088** 
Winter_pre 0.056** 0.056** 0.052** 
square_ Winter_pre 5E-04** 5E-04** 4E-04** 
Spring_pre -0.209** -0.208** -0.214** 
square_ Spring_pre 3E-05 3E-05 3E-05 
Summer_pre 0.088** 0.088** 0.094** 
square_ Summer_pre 1E-05** 1E-05** 2E-05** 
Autumn_pre 0.083** 0.083** 0.089** 
square_ Autumn_pre -8E-05** -8E-05** -8E-05** 
c.Winter_tem#c.Winter_pre -0.003** -0.003** -0.003** 
c.Spring_tem#c.Spring_pre 0.008** 0.008** 0.009** 
c.Summer_tem#c.Summer_pre -0.004** -0.004** -0.004** 
c.Autumn_tem#c.Autumn_pre -0.002** -0.002** -0.002** 
Elevation -0.001** -0.001** -0.001** 
Northeast -0.773** -0.768** -0.773** 
Northwest 0.301** 0.305** 0.425** 
Northern_central -1.531** -1.518** -1.516** 
Southern_central -2.317** -2.301** -2.124** 
Central_highlands 0.726* 0.725* 0.915** 
South -0.374 -0.372 -0.327 
_cons -18.338* -18.355* -24.708** 
R2 0.58 0.580 0.61 
N 7,532 7,532 7,793 
legend: * p<0.05; ** p<0.01 

 
 Variations in precipitation across seasons are also associated with agricultural 
value. This relationship fits a U-shape for winter, spring, and summer while autumn 
precipitation puts an inverse U-shape. In contrast to relative redundancy of rainfall in 
the rainy season, the dry season (October to May) in Vietnam is experiencing shortage 
of rainfall (Nguyen, Renwick, & McGregor, 2013) including the Red River delta, the 
South, the Northwest. Expected decreasing rainfall in this season is, therefore, harmful 
to agricultural production across regions. 
 
 



 
 

Figure 2: Interactions between Temperature and Precipitation 
 

 
 
We find the effects of rising temperature are also dependent on the levels of 

rainfall in the four seasons. Estimates of interaction terms between temperature and 
precipitation in the spring, summer, autumn, and winter, are all statistically significant. 
Figure 2 illustrates interactions between climate elements. As discussed earlier, rising 
temperature in the winter is harmful to the agriculture. However, the negative impact 
of a warmer winter can be mitigated by a high rainfall of 130 millimetres (Figure 2.a). 
In early spring when the temperature is below 24.5°C, increases in temperature are 
beneficial as long as there is a low level of rainfall for plant pollination. When the 
spring proceeds, rising temperature is harmful if there is a shortage of rainfall (Figure 
2.b). In early summer when temperature is below 27°C, a high rainfall of 450 
millimetres helps to maintain the positive marginal effect of rising temperature (Figure 
2.c), relative to lower precipitation levels. Rising temperature is shown to be beneficial 
in the autumn. Figure 2.d shows that the optimum level of precipitation to harness the 
positive impact of rising temperature in the autumn is 190 millimetres, which is above 
the current trend. 

6. Climate Change Impact Simulation 
 In order to obtain a sense of climate change, we simulated the impacts of future 
climate changes on Vietnam agriculture using the Ricardian model results. We started 
with projected climate change for Vietnam developed by the Ministry of Natural 
Resources and Environment (MONRE, 2009) under medium emission scenario. 
Changes in temperature and rainfall are not in uniform across seasons and across 
regions. Temperature is projected to increase by 0.4°C to 3.2°C between 2030 and 
2100. Autumn and winter temperatures are projected to increase faster than those in 
spring and summer. The Northern region will experience faster increases in seasonal 

    a           b. 

    c           d. 



 
 

temperatures. Regional and national averages of precipitation are projected to increase 
but with different patterns for seasons. Therefore, the impact simulation of these 
climate changes across space and time is especially of interest to policy-makers so as 
to propose adaptation responses.  

As all coefficients in the Ricardian model are evaluated at sample means, we 
calculated the differences between projected climate and sample means for each region 
and for each season. These differences were then multiplied by corresponding 
coefficients from step 2 of the Hsiao estimation results. The impact of climate change 
on each region was calculated using regional agricultural land as weight (Equation 12). 
Estimated impact of changing temperature or rainfall for a given region was obtained 
by summing across seasons. The national impacts of seasonal climate change were 
summed across regions. The total impact of changing seasonal climate is the sum of 
temperature and rainfall impact. Tables 6 – 7 provide detailed impacts of changing 
temperature and precipitation on seasonal and regional agricultural income. Seasonal 
variations in climate result in both losses and surpluses ranging from -12.5% to +16%. 
The positive influences of rising precipitation overwhelm the negative effects of 
changing temperature in the long-run. As a result, the combined effect of climate 
change is positive in most of the regions, with the Central Highland being the 
exception. 

Table 5 provides the seasonal and regional distribution of estimated impacts. It 
is interesting to note that projected climate changes bring net benefits to Vietnam 
agriculture in most of the regions in the period 2050-2100. In the short-term, the 
Northwest, the Central Highland and the South (including the Mekong River delta and 
the Southeast) will experience agricultural losses in 2030 resulted by both rising 
temperature and changing precipitation.  Expected losses range from 6.26 to 298 
million USD. In the long-term when more precipitation is expected, severe losses 
resulted by rising temperature are mitigated by higher rainfall. The Central Highland 
is the only region where severe losses are anticipated. 
  



 
 

Table 5: Income Impact of Climate Change on Vietnam Agriculture (Million 
USD) 

Region 

Arable 
Land  
(1000 ha) Winter Spring Summer Autumn 

Whole 
year 

Red River delta 799 
2030 

-10.55 -16.93 56.07 -4.31 24.28 
Northeast 938.3 -3.98 -21.62 49.39 -16.33 7.46 
Northwest 1,178.4 -6.75 -58.25 186.61 -127.87 -6.26 
Northern Central 985.6 -2.36 78.33 -100.96 42.39 17.40 
Southern Central 1,219.9 165.17 116.17 -182.90 159.11 257.56 
Central Highlands 2,420.6 -59.39 -96.03 -146.11 3.36 -298.17 
South 3,987.3 -131.29 -161.04 -228.42 449.62 -71.13 
Whole country  -49.16 -159.37 -366.32 505.97 -68.87 
 

799 
938.3 

2050 
Red River delta -11.68 -21.95 67.03 5.93 39.34 
Northeast -5.34 -25.91 59.80 -3.04 25.51 
Northwest 1,178.4 -9.50 -61.21 203.19 -117.53 14.94 
Northern Central 985.6 -3.79 69.49 -94.20 58.68 30.17 
Southern Central 1,219.9 155.87 113.39 -181.74 171.74 259.26 
Central Highlands 2,420.6 -62.77 -73.92 -142.75 26.47 -252.98 
South 3,987.3 -134.77 -153.10 -224.85 538.80 26.08 
Whole country  -71.99 -153.21 -313.52 681.04 142.33 
 

799 
2100 

Red River delta -14.88 -32.14 89.01 30.14 72.12 
Northeast 938.3 -9.71 -39.18 81.30 28.60 61.00 
Northwest 1,178.4 -15.11 -74.52 238.30 -87.29 61.39 
Northern Central 985.6 -6.95 54.92 -81.54 98.36 64.78 
Southern Central 1,219.9 138.18 98.98 -180.15 205.84 262.84 
Central Highlands 2,420.6 -71.15 -46.26 -136.68 83.64 -170.46 
South 3,987.3 -141.39 -178.07 -221.10 714.85 174.29 
Whole country  -121.02 -216.28 -210.85 1074.13 525.97 

Looking at the distribution of income effects across seasons and across regions 
gives insight on how the combined changes of temperature and rainfall affect Vietnam 
agriculture. Expected rising temperatures in most seasons are associated with losses in 
the Northwest, Southern Central, South, and the Central Highlands (Table 6). 
  



 
 

Table 6: Estimated Agricultural Income Impact of Rising Temperature (Million 
USD) 

Region 

Arable 
Land 
(1000 ha) Winter Spring Summer Autumn 

Whole 
year 

  2030 
Red River delta 799 1.82 -2.26 -0.01 15.50 15.06 
Northeast 938.3 3.50 3.41 0.37 12.22 19.49 
Northwest 1,178.4 9.01 12.17 -2.46 -30.11 -11.39 
Northern Central 985.6 -1.41 -10.08 -0.31 25.22 13.42 
Southern Central 1,219.9 -10.57 -40.32 -0.02 43.79 -7.11 
Central Highlands 2,420.6 -18.15 -29.06 -16.95 -43.65 -107.81 
South 3,987.3 -54.93 -332.20 1.51 353.64 -31.98 
Whole country  -70.73 -398.34 -17.86 376.62 -110.31 
  2050 
Red River delta 799 0.49 -11.27 -0.26 24.58 13.53 
Northeast 938.3 1.86 -3.87 0.29 24.65 22.94 
Northwest 1178.4 5.86 3.82 -1.73 -20.32 -12.37 
Northern Central 985.6 -3.13 -23.61 -1.18 39.15 11.23 
Southern Central 1219.9 -11.50 -47.60 -0.33 53.78 -5.64 
Central Highlands 2420.6 -19.70 -39.88 -14.29 -30.92 -104.79 
South 3987.3 -55.52 -359.11 0.59 425.04 11.00 
Whole country  -81.63 -481.51 -16.91 515.97 -64.09 
  2100 
Red River delta 799 -3.08 -29.46 -1.44 46.36 12.38 
Northeast 938.3 -3.07 -23.42 -0.32 54.58 27.78 
Northwest 1178.4 -0.57 -20.69 -0.17 8.70 -12.72 
Northern Central 985.6 -6.88 -47.76 -4.27 72.48 13.58 
Southern Central 1219.9 -13.53 -71.29 -1.39 83.36 -2.85 
Central Highlands 2420.6 -24.30 -79.03 -8.92 5.78 -106.47 
South 3987.3 -56.52 -453.86 -3.53 565.56 51.64 
Whole country  -107.94 -725.50 -20.04 836.82 -16.66 

  
Projected lower rainfalls in the spring put negative impacts on agricultural 

income in the Red River delta, the Northeast, Northwest, and the Central Highlands 
(Table 7). In contrast, higher precipitation in the summer is predicted to be severely 
harmful to the Northern Central and the Southern region with annual losses ranging 
from 77 to 229 million USD in the period 2030-2100. The combined effects on 
Vietnam agriculture of future changes in temperature and precipitation are negative 
for the winter, spring, and summer with net losses ranging from 49 to 366 million USD 
in the period 2030-2100 (Table 5). However, rising temperature and precipitation in 
the autumn results in potential advantage to agricultural production which offsets the 
negative impacts in other seasons in the long-run. 
  



 
 

 
Table 7: Estimated Agricultural Income Impact of Changing Rainfall (Million 

USD) 

Region 

Arable 
Land 
(1000 ha) Winter Spring Summer Autumn 

Whole 
year 

  2030 
Red River delta 799 -12.37 -14.67 56.08 -19.81 9.23 
Northeast 938.3 -7.48 -25.03 49.02 -28.55 -12.03 
Northwest 1178.4 -15.76 -70.42 189.07 -97.77 5.12 
Northern Central 985.6 -0.95 88.41 -100.65 17.17 3.97 
Southern Central 1219.9 175.73 156.49 -182.88 115.32 264.66 
Central Highlands 2420.6 -41.24 -66.97 -129.16 47.01 -190.36 
South 3987.3 -76.36 171.16 -229.94 95.98 -39.16 
Whole country  21.57 238.97 -348.45 129.35 41.44 
  2050 
Red River delta 799 -12.17 -10.68 67.30 -18.64 25.81 
Northeast 938.3 -7.20 -22.04 59.50 -27.69 2.57 
Northwest 1178.4 -15.36 -65.03 204.92 -97.21 27.31 
Northern Central 985.6 -0.66 93.09 -93.02 19.53 18.94 
Southern Central 1219.9 167.37 160.99 -181.41 117.95 264.90 
Central Highlands 2420.6 -43.07 -34.04 -128.46 57.38 -148.19 
South 3987.3 -79.25 206.01 -225.44 113.75 15.08 
Whole country  9.65 328.30 -296.60 165.07 206.42 
  2100 
Red River delta 799 -11.80 -2.69 90.45 -16.22 59.74 
Northeast 938.3 -6.64 -15.77 81.62 -25.99 33.22 
Northwest 1178.4 -14.54 -53.83 238.47 -95.98 74.11 
Northern Central 985.6 -0.08 102.67 -77.27 25.88 51.20 
Southern Central 1219.9 151.71 170.27 -178.75 122.48 265.70 
Central Highlands 2420.6 -46.85 32.77 -127.76 77.86 -63.99 
South 3987.3 -84.87 275.79 -217.56 149.29 122.64 
Whole country  -13.08 509.21 -190.81 237.31 542.63 

 
This is apparently not the first analysis which finds long-term positive impacts 

of climate change on agriculture. Reinsborough (2003) shown a slightly positive 
impact of non-uniform climate change on Canadian agriculture although the range of 
income impact is quite large. Chen et al. (2013) highlighted the potential advantage of 
rising temperature on China agriculture with net surplus ranging from USD 140 to 
USD 355 per hectare in 2080. Lippert et al. (2009) estimated an increase in land rent 
of about 5%-6% in response to climatic change in Germany agriculture in the period 
2011-2040. Chatzopoulos and Lippert (2015) shown increases in land rent for all farm 
types in Germany under moderate climate changes. 

 
 
 



 
 

7. Concluding  Remarks 
 
 Vietnam is expected to be among the hardest-hit countries by future climate 
changes. Yet little is known about how this agrarian economy will be affected by future 
climate change. This analysis utilized panel data generated from the Vietnam Access 
to Resources Household Surveys and estimated climate normals with high resolution. 
Climate data were grouped into four seasons which allowed us to better investigate the 
distribution of climate impact across time. In contrast to most panel data Ricardian 
analyses which have treated irrigation as an exogeneous variable, we considered 
irrigation endogeneous using the control function method. 

By using the Hsiao two-step method on the Ricardian model, we confirmed the 
positive impact of irrigation on agricultural performance. Rising population is 
positively correlated with higher agricultural income. Farmers with more land 
fragmentation seem to be more efficient in agricultural production. The results 
highlight the nonlinear, seasonal role of changing temperature and precipitation. 
Rising temperature in winter, spring, and summer is especially harmful to the Northern 
Central, Central Highlands, and the Southern region. The projected shortages of 
rainfall in winter and spring are associated with severe losses in the Northwest, the 
South, and the Central Highlands. Higher precipitation in the summer brings net 
benefits to the North only and is associated with losses for the Southern region. The 
country is projected to gain agricultural surpluses in the long-run. The Central 
Highlands is likely to be the most affected by future changes in climate with annual 
losses ranging from 4.7% - 8.3% between 2030 and 2100. Adaptation responses should 
focus on improved drainage and irrigation to cope with the negative impact of 
excessive precipitation and seasonal shortage of water in the dry season.  

This Ricardian analysis attempted to quantify the impacts of future climate 
change on the Vietnam agriculture. The simulation of climate change impact was 
based on the hypothesis that the Vietnam farming system is still the same at present in 
the future. Estimated impacts of climate change, therefore, do not capture future 
technical change to either crops or farming techniques. Irrigation is a positive 
adaptation response to climate change which covers more than 70% of sample farming 
land. This Ricardian analysis did not take into account how the expected climate 
change would affect water availability for irrigation. Although the analysis used panel 
data of ten years, the likely absence of weather-induced price effects is likely to 
overstate the negative impacts of changing climate on agricultural income. Analogous 
to any other Ricardian analyses, this study could not take carbon fertilization into 
account which may lead to overstatements of the negative impacts of changing climate 
due to carbon emission. 
 

References 
 
Adams, R. (1999). On the Search for the Correct Economic Assessment Method. 

Climatic Change, 41(3), 363-370. doi:10.1023/A:1005434215112 
Aggarwal, P., & Mall, R. (2002). Climate Change and Rice Yields in Diverse Agro-

Environments of India. II. Effect of Uncertainties in Scenarios and Crop 
Models on Impact Assessment. Climatic Change, 52(3), 331-343. 
doi:10.1023/A:1013714506779 

Barrett, C. B., Bellemare, M. F., & Hou, J. Y. (2010). Reconsidering Conventional 
Explanations of the Inverse Productivity–Size Relationship. World 



 
 

Development, 38(1), 88-97. 
doi:https://doi.org/10.1016/j.worlddev.2009.06.002 

Chatzopoulos, T., & Lippert, C. (2015). Adaptation and Climate Change Impacts: A 
Structural Ricardian Analysis of Farm Types in Germany. Journal of 
Agricultural Economics, 66(2), 537-554. doi:10.1111/1477-9552.12098 

Chen, Y., Wu, Z., Okamoto, K., Han, X., Ma, G., Chien, H., et al. (2013). The 
impacts of climate change on crops in China: A Ricardian analysis. Global 
and Planetary Change, 104, 61-74. doi:10.1016/j.gloplacha.2013.01.005 

Dall'erba, S., & Domínguez, F. (2016). The Impact of Climate Change on 
Agriculture in the Southwestern United States: The Ricardian Approach 
Revisited. Spatial Economic Analysis, 11(1), 46-66. 
doi:10.1080/17421772.2015.1076574 

Dasgupta, S., Laplante, B., Meisner, C., Wheeler, D., & Yan, J. (2009). The impact 
of sea level rise on developing countries: a comparative analysis. Climatic 
change, 93(3-4), 379-388. 

De Salvo, M., Raffaelli, R., & Moser, R. J. A. S. (2013). The impact of climate 
change on permanent crops in an Alpine region: A Ricardian analysis. 
Agricultural System 118, 23-32. 

Deschenes, O., & Greenstone, M. (2007). The Economic Impacts of Climate Change: 
Evidence from Agricultural Output and Random Fluctuations in Weather. 
American Economic Review, 97(1), 354-385. 

Dinar, A. (1998). Measuring the impact of climate change on Indian agriculture  
(Vol. 402): World Bank Publications. 

Ewert, F., Rötter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., et al. 
(2015). Crop modelling for integrated assessment of risk to food production 
from climate change. Environmental Modelling & Software, 72, 287-303. 

Fezzi, C., & Bateman, I. (2015). The Impact of Climate Change on Agriculture: 
Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland 
Values. Journal of the Association of Environmental and Resource 
Economists, 2(1), 57-92. doi:10.1086/680257 

Francisco, F., & Maria, B. (2015). Modelling the Economic Impacts of Climate 
Change on Global and European Agriculture. Review of Economic Structural 
Approaches. Economics, 9(10), 1-53A. 

Hoffmann, U. (2013). Section B: Agriculture: a key driver and a major victim of 
global warming. Lead Article, in, 3-5. 

Imbs, J., Ravn, M., & Rey, H. (2005). PPP Strikes Back: Aggregation and the Real 
Exchange Rate. The Quarterly Journal of Economics, 120(1), 1-44. 
doi:10.1162/0033553053327524 

Kurukulasuriya, P. (2007). The impact of climate change on African agriculture: A 
Ricardian approach (Vol. 4306): The World Bank. 

Le Thi Diem Phuc, V. D., Vu, H., & Xuan, H. T. D. (2015). Estimating the economic 
impacts of climate change on crop production in coastal provinces of the 
Mekong delta Vietnam. Laguna, Philippines: Economy and Environment for 
Southeast Asia 

Leif Christian, S., Jørn, S., Kung-Sik, C., Lorenzo, C., Nathalie, P., Michael, G., et 
al. (2006). The effect of climate variation on agro-pastoral production in 
Africa. Proceedings of the National Academy of Sciences of the United States 
of America, 103(9), 3049. doi:10.1073/pnas.0600057103 

https://doi.org/10.1016/j.worlddev.2009.06.002


 
 

Lippert, C., Krimly, T., & Aurbacher, J. (2009). A Ricardian analysis of the impact 
of climate change on agriculture in Germany. Climatic Change, 97(3), 593-
610. doi:10.1007/s10584-009-9652-9 

Lobell, D., Schlenker, W., & Costa-Roberts, J. (2011). Climate Trends and Global 
Crop Production Since 1980. Science, 333(6042), 616-620. 
doi:10.1126/science.1204531 

Maddison, D. (2000). A hedonic analysis of agricultural land prices in England and 
Wales. European Review of Agricultural Economics, 27(4), 519. 

Maddison, D., Manley, M., & Kurukulasuriya, P. (2007). The impact of climate 
change on African agriculture: a ricardian approach. The World Bank. 
Retrieved from https://EconPapers.repec.org/RePEc:wbk:wbrwps:4306 

Massetti, E., & Mendelsohn, R. (2011). Estimating Ricardian models with panel 
data. Climate Change Economics, 2(04), 301-319. 

Massetti, E., & Mendelsohn, R. (2014). A Ricardian Analysis of the Impact of 
Climate Change on European Agriculture. IDEAS Working Paper Series from 
RePEc 

Mendelsohn, R., & Dinar, A. (2003). Climate, Water, and Agriculture. Land 
Economics, 79(3), 328-341. doi:10.2307/3147020 

Mendelsohn, R., Nordhaus, W. D., & Shaw, D. (1994). The Impact of Global 
Warming on Agriculture: A Ricardian Analysis. American Economic Review, 
84(4), 753-771. 

Ministry of Natural Resources and Environment. (2009). Climate Change, Sea Level 
Rise Scenario for Vietnam. Hanoi, Vietnam:  

Nguyen, D. Q., Renwick, J., & McGregor, J. (2013). Variations of surface 
temperature and rainfall in Vietnam from 1971 to 2010. International Journal 
of Climatology, 34(1), 249-264. doi:10.1002/joc.3684 

OECD. (2015). Agricultural Policies in Viet Nam 2015: OECD Publishing. 
Reinsborough, M. J. (2003). A Ricardian model of climate change in Canada. 

Canadian Journal of Economics/Revue canadienne d'E'conomique, 36(1), 21-
40. 

Schlenker, W., Hanemann, W. M., & Fisher, A. C. (2006). The Impact of Global 
Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing 
Conditions. Review of Economics and Statistics, 88(1), 113-125. 
doi:10.1162/rest.2006.88.1.113 

Schlenker, W., Michael Hanemann, W., & Fisher, A. C. (2005). Will U.S. 
Agriculture Really Benefit from Global Warming? Accounting for Irrigation 
in the Hedonic Approach. American Economic Review, 95(1), 395-406. 
doi:10.1257/0002828053828455 

Seo, S., Mendelsohn, R., Dinar, A., Hassan, R., & Kurukulasuriya, P. (2009). A 
Ricardian Analysis of the Distribution of Climate Change Impacts on 
Agriculture across Agro-Ecological Zones in Africa. Environmental and 
Resource Economics, 43(3), 313-332. doi:10.1007/s10640-009-9270-z 

Timmins, C. (2006). Endogenous Land use and the Ricardian Valuation of Climate 
Change. Environmental and Resource Economics, 33(1), 119-142. 
doi:10.1007/s10640-005-2646-9 

Trinh, T. (2018). The Impact of Climate Change on Agriculture: Findings from 
Households in Vietnam. Environmental and Resource Economics, 71(4), 897-
921. doi:10.1007/s10640-017-0189-5 

Van Hung, P., Macaulay, T. G., & Marsh, S. P. (2007). The economics of land 
fragmentation in the north of Vietnam. Australian Journal of Agricultural 

https://econpapers.repec.org/RePEc:wbk:wbrwps:4306


 
 

and Resource Economics, 51(2), 195-211. doi:10.1111/j.1467-
8489.2007.00378.x 

Van Wart, J., Kersebaum, K. C., Peng, S., Milner, M., & Cassman, K. G. (2013). 
Estimating crop yield potential at regional to national scales. Field Crops 
Research, 143, 34-43. doi:10.1016/j.fcr.2012.11.018 

Vanschoenwinkel, J., & Passel, S. (2018). Climate response of rainfed versus 
irrigated farms: the bias of farm heterogeneity in irrigation. Climatic Change, 
147(1), 225-234. doi:10.1007/s10584-018-2141-2 

Wang, J., Mendelsohn, R., Dinar, A., Huang, J., Rozelle, S., & Zhang, L. (2009). The 
impact of climate change on China's agriculture. Agricultural Economics, 
40(3), 323-337. doi:10.1111/j.1574-0862.2009.00379.x 

Wolfram, S., & Michael, J. R. (2009). Nonlinear temperature effects indicate severe 
damages to U.S. crop yields under climate change. Proceedings of the 
National Academy of Sciences, 106(37), 15594. 
doi:10.1073/pnas.0906865106 

Wooldridge, J. M. (2015). Control function methods in applied econometrics. 
Journal of Human Resources, 50(2), 420-445. 

Yohannes, H. (2016). A review on relationship between climate change and 
agriculture. Journal of Earth Science & Climate Change, 7, 335. 

 


	1. Introduction
	2. Literature Review
	3. Research Method and Model Specification
	3.1. The Ricardian Approach to Valuing Economic Impact of Climate Change
	3.2. The Two-Stage Hsiao Method for Panel Data

	4. Data
	5. Estimation Results
	6. Climate Change Impact Simulation
	7. Concluding  Remarks
	References

