Economic Impacts of Irrigation Scheduling Decisions

Carla Muller, Mark Neal, MS Srinivasan, Richard Measures NZARES, 30 August 2018, Wellington RINA Taihoro Nukurangi

Climate, Freshwater & Ocean Science

Irrigation Insight

- Collaborative research programme- including NIWA, DairyNZ, Fonterra, AgResearch, LIC and IrrigationNZ.
- Focus on developing knowledge, tools and confidence in better managing irrigation, precisely applying the water needed—where, when and how much.
- Aims to use improved weather forecast, drainage and economic impact estimations to inform on-farm water management on irrigated dairy farms, ideally at a marginal level.

Hydro-Economic model

- A model which estimates the environmental and economic impacts of various irrigation scheduling practices.
- This presentation includes altering the application depth and frequency, and test the direct and indirect economic benefits and costs in a basic scenario.
- Future iterations:
 - Vary soil type
 - Include weather forecasts
 - Include nutrient losses
 - More complex scheduling decisions

Hydrology

- The hydrological model calculates changes in root zone soil moisture each day using a water balance approach accounting for rainfall, irrigation, evapotranspiration and drainage.
- Uses 18 seasons, results are an average over these seasons.

Climate, Freshwater & Ocean Science

Indirect costs – impact on PGR

• Equation 1- soil moisture • $F_{moisture} = \begin{cases} 0 & \text{if } PAW \leq WP \\ \frac{AET}{PET} & \text{if } WP < PAW \leq SP \\ \left(0.5 + 0.5\frac{Sat - PAW}{Sat - FC}\right) & \text{if } FC < PAW \leq Sat \\ 0 & \text{if } Sat < PAW \end{cases}$

• Equation 2- wastage •
$$F_{wastage} = \begin{cases} 1 & \text{if } PAW \leq SP \\ 1 - 0.16 \frac{PAW - SP}{FC - SP} & \text{if } PAW > SP \end{cases}$$

• Equation 3- pugging •
$$F_{pugging} = \left(1 - \frac{DaysPugging}{RotationLength} \times ImpactSeverity\right)$$

Scenario- Farm A

2 Guns: 45mm depth & 11 day return

3 Guns: 35mm depth & 9 day return

Just in time: Irrigate when soil storage reaches user set threshold

Always: Irrigate whenever water is available

Name	Irrigators	Irrigation approach	Frequency limitation logic	
2-JM	2 Guns	Just in time	Minimum return interval	
2-AM	2 Guns	Always	Minimum return interval	
2-JR	2 Guns	Just in time	Rostered	
2-AR	2 Guns	Always	Rostered	
3-JM	3 Guns	Just in time	Minimum return interval	
3-AM	3 Guns	Always	Minimum return interval	
3-JR	3 Guns	Just in time	Rostered	
3-AR	3 Guns	Always	Rostered	

Minimum return interval: Cannot irrigate until a set number of days after the last irrigation

Roster: Irrigate on pre-set days

Farm A results

Name	Irrigation applied		Days of irrigation	Total drainage
	(m ³)	(mm)		(irrigation season) (mm)
2-JM	437,325	368	90	20
2-AM	749,700	630	154	261
2-JR	410,550	345	84	18
2-AR	749,700	630	154	261
3-JM	425,756	358	92	18
3-AM	708,050	595	153	225
3-JR	402,617	338	87	12
3-AR	708,050	595	153	225

Farm A results

Name	Total direct costs \$/ha/yr	Pasture grown Kg DM/ha/yr	Pasture value \$/ha/yr	Total value (value of pasture minus direct costs) \$/ha/yr
2-JM	\$429	13,732	\$3,116	\$2,688
2-AM	\$735	11,311	\$2,646	\$1,911
2-JR	\$402	13,997	\$3,172	\$2,770 [#]
2-AR	\$735	11,311	\$2,646	\$1,911
3-JM	\$431	13,960	\$3,165	\$2,733 [#]
3-AM	\$718	11,360	\$2,642	\$1,924
3-JR	\$408	14,150	\$3,207	\$2,799
3-AR	\$718	11,360	\$2,642	\$1,924

Farm A results- Direct costs & value from PG

Farm A results- Water use and total value

Climate, Freshwater & Ocean Science

Farm A conclusions

- Theoretical best option = purchase the new irrigation gun, reduce their irrigation application depth and return length, and utilise a just in time irrigation approach and a roster.
- However, there is not a significant difference between the top four options (scenarios 3-JR, 2-JR, 3-JM, 2-JM).
- The difference in roster and minimum return is generally driven by type of infrastructure on farm.
- So no significant economic benefit in purchasing additional irrigation infrastructurein this case.
- Significant benefit in using a just in time approach relative to the always irrigation approach.
- The top four scenarios economically also had lower total drainage, indicating a positive environmental outcome as well.
 Climate, Freshwater & Ocean Science

Conclusions

- Farm A shows that there is a significant positive economic and environmental benefit from using soil storage based scheduling rather than a rostering system.
- However, there is no significant difference between reducing irrigation application depth by 10mm and rotation length by 2 days.
- While these results aren't ground breaking, they tested the model, proving its validity and mean we can continue further development.
- This research provides an important first step in understanding the economic impact of marginal irrigation scheduling decisions.

Thank you

Carla Muller carla.muller@niwa.co.nz

Carla Muller, Mark Neal, MS Srinivasan, Richard Measures

The Irrigation Insight programme is funded by the Ministry of Business, Innovation and Employment (MBIE).

Programme partners:

- NIWA,
- DairyNZ,
- Fonterra,
- AgResearch,
- LIC and
- IrrigationNZ.

