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Abstract  

We examine the empirical impact of carbon and water cycles on farm economic performance in 

Aotearoa New Zealand. We do so by linking a unique longitudinal dataset of farms’ financial and 

agricultural activities with outputs from the Biome-BGC model that simulates the storage and flows of 

water, carbon, and nitrogen between ecosystems and the atmosphere across ecosystems. The interlinked 

dynamics of carbon-water cycles over time and across space are observed via changes in pasture dry 

matter, exotic forest net ecosystem productivity, and soil moisture water deficit. We estimate separate 

econometric models for different farm systems, including dairy, sheep and beef and forestry farms.  

On a dataset of 387,009 annual observations from 95,532 farms over the period 2003-2022, we establish 

a statistically and economically significant relationship of carbon and water cycles on economic 

outcomes of pastoral farms. Specifically, higher photosynthetic carbon uptake, proxied by higher 

pasture dry matters, increase farm profitability through substantially increased revenues as compared 

to intermediate costs. This effect is less statistically significant but more economically meaningful for 

sheep and beef farms as compared to dairy farms due to their less intensive input systems. In contrast, 

reduced surface water availability, indicated by increased soil moisture deficit, has a negative effect on 

profitability. This impact is weaker for sheep and beef farms due to the delayed economic response to 

drought which materializes only after three years.  We also find little evidence of the contemporary 

effect of carbon-water cycle on forestry farm economics, most probably due to long harvest cycle and 

the design of carbon accounting methods.  
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1. Introduction  

This study explores how Aotearoa New Zealand’s farm economics are influenced by the interlinked 

dynamics of the water and carbon cycles. Our overarching question is: To what extent do spatio-

temporal variations in water and carbon cycles impact farm economic outcomes across different land 

use? This question worths investigation for several reasons, most notably due to the dominant role of 

farming industries in New Zealand’s nature-based economy. In New Zealand, food and fibre contributes 

to 11% of its annual GDP but 80% of its total exported good. Rural land use is dominated by pastoral 

farming and harvest forestry, in addition to horticulture and biodiversity conservation. Unlike other 

developed countries, the country maintains an exceptionally low level of agriculture subsidy, which 

means farmers are directly exposed to global market signals. Furthermore, New Zealand Emissions 

Trading Scheme is the only carbon price scheme in the world that is designed to cover the entire forestry 

sector and to allow a 100% offset of fossil fuel emissions through forestry carbon sequestration. This 

context provides a unique setting to investigate how nature-based ecosystem services, such as carbon 

and water, influence farm-level economic outcomes without distorts from government intervention. In 

the present context of increasing pressure from climate change and nature loss, exploring the impact of 

water and carbon cycles on farm economics is highly relevant to land management and land-use change 

decisions in New Zealand.  

Given the dominance of farming industries, land-use change in New Zealand has historical 

been, and continues to be, largely driven by economic considerations. Starting in the 1990s, the country 

experienced a dairy boom driven by low land prices and rising global dairy prices, leading to a shift 

from sheep and beef farming to irrigated dairy farming on large scales. Between 1990 and 2022, the 

national dairy herd more than doubled from 2.4 million to 5.9 million, while the sheep population halved 

to 24.4 million in the same period (MfE & Stats New Zealand, 2024). Although this trend has stabilised 

in the recent years, dairy farms have continued to intensify their farming practices via higher stocking 

rates and increased uses of fertilizers, irrigations, and supplementary feed. As dairy herds grow, they 

put increasing pressures on the natural environment, including blue water losses from irrigated pasture, 

nitrogen leakage into waterways, and rising greenhouse gas emissions including methane from enteric 

fermentation in ruminant livestock and nitrous oxide from urine, dung, and nitrogen fertilisers (Leahy 

et al., 2019; Cameron and Peer 2025).     

Concurrently, rising carbon prices and the inclusion of forestry as a carbon sink under the NZ 

ETS have driven widespread conversion of pastoral farms into forestry (Polyakov et al., 2024). On 

annual basis between 2019 and 2022, it is estimated that around 55,000 hectare is converted from sheep 

and beef farms to forestry farms for the dual purpose of harvest wood and carbon storage (Beef + Lamb 
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New Zealand, 2023a).1 While plantation forestry is often perceived as more environmentally friendly 

than pastoral farms, the long-term implications of large-scale afforestation, particularly monoculture 

exotic carbon forests, have not been fully considered. Concerns have been raised that pine carbon 

forestry are locking up productive farmlands, competing for downstream water resources, contributing 

to biodiversity loss, while subsiding fossil fuel emissions which will eventually lead to an even higher 

hidden carbon cost (ref).  Alternative solutions have been advocated, including restricting farm-to-forest 

conversion or pricing agricultural emissions, which are still in the discussion stages.  

These anecdotal evidence showcases that rural land-use decisions, at its core, are an economic 

optimization problem, with the goal to achieve the maximum dollar value from a fixed area of land. 

Like many other economic decisions, short-term thinking is inscribed in this decision-making process, 

with priorities placed on short-term cash flows rather than long-term sustainability (Carney, 2015). 

Environmental outcomes are typically treated as constraints or trade-offs rather than being integrated 

into economic outcomes, reflecting a “marriage of inconvenience” between economics and the 

environment (Upton, 2024). This perspective is rooted in the implicit assumption that farms’ access to 

nature and its ecosystem services, including the water and carbon cycles, will remain free and unlimited 

over the long term. As a result, some land-use decisions while bring additional economic values may 

deplete the water resources or contribute to the unbalanced carbon cycles. Managing these sometimes-

conflicting interests will only become more challenging in the future with climate change. To reconcile 

these interests, it is important to understand the implications of the water and carbon cycles on the 

economic performance of different land use. 

Meanwhile, a paradigm shift that reconceptualise the nature-society-economy relationship is 

emerging in global market, and particularly that of economic and financial practitioners. This 

perspective views that a society’s economy is embedded in nature, recognizing that while it cannot exist 

without nature, it also impacts nature and its underpinning prosperity (Dasgupta, 2021). This view 

contrasts with neoclassical economic models that often overlook nature’s role or traditional metrics, 

like GDP, measures growth via dollar output but fails to account for the broader notion of inclusive 

wealth, including natural capital. Past finite growth is often achieved by depleting the natural resources, 

and the price we pay for nature, such as water and carbon cycles, is far less than its true value. This is 

beginning to shift with the growing realisation that nature-related risk may pose a major source of 

economic and financial risks. This risk is intertwined with climate change and may pose the greater risk 

to financial stability and the broader economy. Efforts like the 2022 Kunming-Montreal Global 

Biodiversity Framework that aim to halt and reverse the loss of nature by 2030, and the 2023 Taskforce 

on Nature-related Financial Disclosures framework that set the global standard for reporting on nature 

and biodiversity by corporate and financial institutions is driving this reconceptualization. The 

 
1 See Appendix S1 for the role of agriculture and forestry sector in New Zealand carbon emission profile and the change in New Zealand 

Emission Unit prices over time.  
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mainstreaming of nature-related considerations in economic decision-making will have a direct 

implication for agricultural farms that rely on a sustained flow of ecosystem services to operate. This is 

particularly relevant to New Zealand given its direct exposure to the global trades and its intensified 

pastoral farming practices which are both heavily reliant on, and placing increasing pressures, on the 

interlinked water and carbon cycles.  

Against this backdrop, our empirical study seeks to quantify the “observed” impact of the water 

and carbon cycle on farm economics, in other words, the shadow prices of these ecosystem services in 

dollar terms. To do so, we exploit a unique dataset - the long-standing and large-scale Agricultural 

Production Statistics (APS) survey - conducted by Statistics New Zealand to collect official statistics 

on agricultural and forestry production over time. We combine this dataset with biophysical outputs 

from the BiomeBGC model, a widely used ecosystem process model that estimates fluxes and storage 

of energy, water, carbon, and nitrogen for the vegetation and soil components of terrestrial ecosystems 

across different land uses. The BiomeBGC model originated from the United States but has undergone 

extensive calibration and validation to better represent New Zealand pastoral farm and forestry systems 

in the past decade, including improved representation of water cycle, soil hydrology, and the simulation 

of managed crop and pasture systems  (Keller et al., 2014). The model generate a suite of biophysical 

outputs, among which the most relevant carbon-water cycle indicators for our analysis are: pasture dry 

matter (DM) - derived from the amount of carbon available for plant growth and is a proxy for feed 

availability on pastoral farms;  net ecosystem productivity (NEP) - derived from the total amount of 

organic carbon accumulated  in an ecosystem over a specific period and is an indicator of forestry’s 

(annual) carbon sequestration;  soil moisture deficit (SMD) - derived from daily rainfall minus potential 

evapotranspiration in the pasture plant root zone and capture surface water shortage or drought periods.   

Employing longitudinal data for 387,009 distinct farms during the period 2003-2022, we 

document a statistically and economically significant relationship of the carbon and water cycles on the 

profitability of pastoral farms. Specifically, pastoral farms operated on land parcels with higher pasture 

dry matter and lower soil moisture deficit tend to have better taxable profit per hectare, holding other 

things equal. We find that the magnitude of pasture dry matter effect is relatively more pronounced for 

sheep and beef farms’ farm profit since most of their food is supplied by grazed pasture as compared to 

dairy farms that rely heavily on supplemental feeds. In contrast, the marginal effect of surface water 

shortage seems to have a contemporary effect on dairy profit but not on sheep and beef farms. This 

implies that dairy profit is very sensitive to short-term water availability due to higher daily water 

demand among dairy cows, but for meat production (e.g., lambs or cattle), the water shortage effect can 

only manifest over years. Our results withstand accounting for bilateral differences in farm economic 

and operational scales, geographical/agroclimatic characteristics, farm diverse land-use activities, 

spatial spillover effects from neighbouring farms of similar land use, as well as unobserved farm 

management practices captured by fixed effect models. A placebo test show that the effect of water- 
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and carbon-cycles either reduce or totally disappear after fertiliser and irrigation practices are accounted 

for. The core findings also remain intact when we control for abnormal economic downturns such as 

the global financial crisis 2008-2009,  the severe drought that affect the entire North Island and the west 

coast of the South Island in 2012-2013, as well as the financial  Covid period within 2019-2020.  

We propose several explanations for the established relationship among the carbon and water 

cycles affect farm profitability, and we examine a range of economic outcomes, including total output, 

intermediate expenses, and short-term debt, as proxies for these mechanisms. Our results suggest that 

reduced pastoral profitability associated with surface water shortages is most likely driven by a sharp 

decline in total output, and to a lesser extent, a reduction in intermediate expenses per hectare. 

Conversely, increased pastoral profitability associated with higher vegetation and soil carbon 

sequestration, proxied by greater pasture dry matter, appears to be linked to higher output and lower 

intermediate costs, although these relationships are not statistically significant. This pattern is more 

evident among dairy farms and less so for sheep and beef farms. These findings demonstrate that while 

the water and carbon cycles are intimately connected, their economic spillover effects vary across 

agricultural land uses. 

As for forestry farms, we hypothesize that with their carbon sequestration directly monetarised 

via NZ ETS carbon credit units (NZUs) and water-carbon cycles indirectly monetarised via growing 

harvested wood, they tend to have higher profitability that are associated with higher carbon 

sequestration and lower soil moisture. Contrary to our expectations, we find almost null impact of 

carbon sequestration or surface soil moisture deficit on forest farm profitability. Similar findings are 

observed when we examine other economic outcomes such as revenue, expenses, and debts. While 

initially counterintuitive, we propose several explanations for these null findings. First, our forestry 

dataset may include a mix of production forests and carbon forests, and in the case of purely production 

forests, there is no revenue stream from carbon credits. Second, carbon credits are allocated based on 

standardized, modelled carbon exchange in advance of actual harvest or physical carbon uptake, with 

no variation due to climate and soil conditions (Sedjo & Sohngen, 2012). The designation of carbon 

accounting methods in NZ ETS allows forestry farmers can earn carbon credits either as tree grows 

(carbon-stock change) or as the forest grows up to a pre-determined average level (average-

accounting). The actual timing of carbon uptake (reflected in annual net primary productivity) does not 

always coincide with annual profitability as revenue from carbon credit sales is only realized upon sale.2 

Further, the Biome-BGC model has not been optimised for New Zealand’s exotic forestry systems due 

to the lack of suitable eddy covariance data. This model–data mismatch may also contribute to the null 

results observed. 

 
22 Carbon sequestration potential is closely linked to its above-ground, below-ground biomass and type of vegetation. Typically, the carbon 

sequestration rate follows a logistic growth curve, with exponential growth in the first few years and stabilisation after the ecosystem 

reaches maturity (typically +23 years of native forest, +16 years for pines, +12 years for exotic hardwood, +22 year for exotic softwood, 
+50 years of agriculture, and +20 years of wetlands).  
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The null results related to surface soil moisture deficit on forestry farms can be explained in a 

similar manner. Unlike pastoral farms which are direct extractors of water resources and consumers of 

blue water (e.g., surface water and groundwater), plantation forestry relies on green water (e.g., rainfall) 

for their water demand. Forestry, especially indigenous species, can enhance net groundwater recharge 

or groundwater volumes. However, planted exotic forests are increasingly seen as a competitor for water 

resources by downstream users, as past work (Mourot et al., 2021; Mourot et al., 2022) highlighted that 

exotic forests generally have higher evapotranspiration rates and have deeper root systems that can 

access moisture from deeper soil layers. In both cases, however, forestry farms do not rely on surface 

water or irrigation (indicated by surface and shallow subsurface soil moisture deficit). Second, forestry 

farms have a long average harvest age that can span through several decades. The long-term nature of 

rotations therefore weakens any direct, short-term link between carbon uptake, water availability and 

net income in the economic models.  

Overall, this study proposes and establishes empirically that New Zealand pastoral farms 

economics are heavily influenced by the water and carbon cycles. As previewed earlier, we find 

empirical support for this proposition in pooled panel and fixed effect regression analyses. These 

findings contribute to the growing literature on the economic and financial implications of climate 

change and nature degradation and lay empirical foundations for emerging climate and nature stress 

testing framework. In particular, it addresses a key empirical gap concerning how carbon and water 

cycles jointly affect farms profitability. This is important since terrestrial carbon and water cycles are 

inherently connected through plant-mediated exchanges between the biosphere and the atmosphere 

across multiple spatial and temporal scales (Friedlingstein, 2015; Gentine et al., 2019).  Yet, despite 

this fundamental coupling, research and resource management efforts often treat water and carbon in 

isolation. Much of the existing literature remains narrowly focused on single-resource dynamics, 

overlooking the complex synergies and trade-offs between water availability, greenhouse gas mitigation 

strategies, food production, and farm-level economic performance. Managing for only one outcome 

risks generating unintended consequences in other areas due to their deeply interlinked nature. 

Therefore, this study highlights the need for integrated, holistic approaches that recognise the dual roles 

of carbon and water especially in a changing climate.  

  The rest of this paper proceeds as follow. Section 2 provide more backgrounds on Aotearoa 

New Zealand farming sector and their impact of water and carbon on farms economics. Section 3 and 

Section 4 describes data and empirical strategies to derive the impact of water and carbon cycle on 

different land use types. Section 5 summarise the main findings. Section 6 document robustness test. 

Section 7 concludes.  

2. Background  

2.1. The roles of agriculture farming in Aotearoa New Zealand nature-based economy  
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Rural land use in Aotearoa New Zealand encompasses a wide range of purposes, dominated by 

pastoral farming but also forestry, horticulture and environmental/biodiversity conservation. With the 

significant role of primary industries in New Zealand’s economy, economic returns are a strong driver 

of land use transitions. Food and fibre contribute to 10.5% of the national GDP and account for 80% of 

total exported goods and 13.1% of the national labour force (MPI, 2023). The sector comprises 47,250 

farms covering 44% of the country’s land (8.2 Mha for sheep and beef farms, 2.2 Mha for dairy farms, 

and 1.8 Mha for forestry farms). Pastoral agriculture is dominant, and herd size (particularly dairy) has 

continued to grow in recent years. As of 2023, New Zealand has 3.7 million beef cattle, 5.9 million 

dairy cattle and 24.4 million sheep (Stats New Zealand, 2023).   

New Zealand agriculture subsidy policy is globally unique, as it maintains a very low level of 

government subsidies compared to other developed countries. A 2016 estimate found that government 

subsidies make up less than 1% of New Zealand farmers’ income as compared to 16% among OECD 

countries (MPI, 2019). Agricultural subsidies, introduced in the 1970s to combat foreign exchange 

shortfall from increased oil costs and collapsed commodity prices, underwent major reforms in the 

1980s due to unsustainable high costs while making the sector inefficient and uncompetitive on the 

international market (MPI, 2017). Nowadays, the only form of direct agricultural subsidies is for erosion 

control and income hardship for natural hazards (e.g., flood and drought). Indirect subsidies are limited 

to “green shoes” options to cover government expenditure on biosecurity, research and development, 

and natural disasters. This policy means that farmers’ behaviours are more responsive to market signals 

and that the interrelationships between water, carbon cycle, and farm economics are less likely to be 

distorted by agricultural subsidies (Timar & Apatov, 2020).  

Farm-level land-use decisions involve complex trade-offs between economic returns, water 

resources, and the carbon cycle. Dairy farms generate the highest economic value but can deplete water 

resources, lower groundwater recharge, and contribute significantly to biological GHG emissions while 

reducing soil carbon sequestration. However, over-irrigation in agriculture can increase carbon 

emissions by releasing GHGs from waterlogged soils and degrading organic matter. Sheep and beef 

farms produce lower economic returns, rely less on water, and contribute fewer carbon emissions. 

Forestry historically, in contrast, supports groundwater recharge by reducing surface runoff and 

enhancing infiltration. Forests also act as carbon sinks, absorbing CO₂ and storing it in biomass and 

soils. Land management strategies that protect or expand forests can enhance carbon sequestration, 

mitigate climate change impacts, and generate economic values. Climate change amplified this problem 

by reducing water availability and increase dry matter. 

In practice, New Zealand farms’ environmental impacts are closely tied to land-use. Beef and 

sheep farms typically have lower environmental impact, as they are stocked at much lower rates and 

are rarely fertilized or irrigated. Additionally, most of their food is supplied by grazed pasture, only 

requiring small amounts of forage crops grown on-farm to overcome occasional pasture shortages in 



9 
 

summer or winter. Dairy farms, meanwhile, have very high stocking rates and require substantially 

more inputs such as fertilizers, irrigation, and supplementary feed. As dairy herds grow, so do the 

associated environmental pressures, such as nitrate leakage into groundwater, leading to declining water 

quality and sometimes rendering it undrinkable (Joy et al., 2022). A national limit of nitrogen 

concentration of 1 mg/L in water was introduced in 2021 to address this problem but faced pushbacks, 

as economic modelling projected potential losses of $6 million in annual GDP and a 5.2% drop in 

exports (MPI, 2021).  

Against this background, forestry often serves a dual purpose of carbon storage and economic 

return from wood production (PCE, 2025). There is currently 10.1 Mha of forest in New Zealand; 

roughly 80% of this is native forest, and the other 20% is exotic (PCE, 2025). 1.8 Mha of the total is 

devoted to the forestry industry, which is almost exclusively exotic plantation forest (predominantly 

Pinus radiata). New Zealand has committed to be carbon neutral by 2050 and heavily relies on 

afforestation to offset its carbon emissions. Government incentives for tree planting such as the 2008 

New Zealand Emissions Trading Scheme (NZ ETS) and the One Billion Trees Programme (MPI, 2025) 

as well as high market carbon prices have resulted in an increase in afforestation in New Zealand in 

recent decades (PCE, 2025). This has mostly been accomplished with exotic plantation forest because 

of their rapid growth rates in New Zealand’s temperate, maritime climate, with the additional benefits 

that they can eventually be harvested for profit.  

The NZ ETS is the only carbon price scheme in the world that is designed to cover the entire 

forestry sector and to allow a 100% offset of fossil fuel emissions with forestry (Leining & Kerr, 2018).3 

This is different from other carbon pricing systems that only allow forestry offsets on a case-by-case 

basis. The New Zealand ETS uses 1 January 1990 as a baseline to define the deforestation and 

afforestation boundary: (1) pre-1990 forest land is not eligible for carbon credits but may incur penalties 

if deforested, and (2) post-1990 forest land may be eligible to earn carbon credits, but these units must 

be surrendered when harvested. After removing the price cap on carbon units in 2019, the subsequent 

increases in carbon price resulted in around 55,000 ha per year being converted from sheep and beef 

farms to forestry between 2019-2022 (Beef + Lamb New Zealand, 2023a).  

The long-term implications of large-scale afforestation with exotic species have not been fully 

considered. Planted exotic forests are increasingly seen as a competitor for water resources by 

downstream users. Past work (Mourot et al., 2021; Mourot et al., 2022) highlighted that exotic forests 

generally consume more water than other vegetation types and tend to reduce available water 

downstream, but they can also improve soil and water quality, provide cooling boundary layers, and 

provide erosion control. However, planting monocultures on New Zealand steep slopes combined with 

 
3 According to Liao et al (2024), “the original NZ ETS aspired to include all sectors and all GHGs and should have had the 

most extensive sectoral coverage by far among all the ETSs in the world. As of December 2019, just over 50% of NZ 

GHGs emissions are covered by surrender obligations in the NZ ETS”.  
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poor management practices can result in severe damage caused by debris flow during extreme rainfall 

events. These events are becoming more frequent due to climate change. For example, Cyclone 

Gabrielle hit New Zealand North Island on 14 February 2023 with extreme heavy rainfall, particularly 

on the East Coast and the Gisborne region, causing sediment and forestry slash to be washed 

downstream and resulting in loss of life and damage to infrastructure, private property and natural 

ecosystems (Ministerial Inquiry into Land Uses in Tairawhiti and Wairoa, May 2023). 

Land-use conversion also happens within pasture farming. The dairy boom started in the 1990s 

due to low land prices and rising global dairy prices, leading to a shift from sheep and beef farming to 

irrigated dairy farming on large scales. Between 1990-2022, the national dairy herd more than doubled 

from 2.4 million to 5.9 million, while the sheep population declined from 57.9 million to 24.4 million 

in the same period. In the last decade, these trends have stabilized (MfE & Stats New Zealand, 2024). 

However, the New Zealand dairy industry continues to intensify with higher stocking rates and 

increased use of fertilizer and irrigation. 

Pasture farming is a major consumer of freshwater. Cameron and Peer (2025) found that the 

dairy sector accounts for approximately 20% of the consumptive water use in the country, with 90% of 

water sourced from surface water and >90% of dairy water use driven by irrigation. On-farm water use 

guidelines for dairy farms suggests an average daily demand of 70 L/cow/day for milking cows and 45 

L/cow/day per day for dry stock, but the water footprint of dairy farming can vary markedly from this 

estimate (Higham, 2017). Meanwhile, beef and sheep farms generally use less water, as the average 

daily demand for mature animals is about 30 L/cattle/day and 3L/sheep/day (Horizon Council, 2022). 

Zonderland-Thomassen et al. (2014) found that New Zealand blue water losses from grazing systems 

is low compared to global benchmark (0.37 L/kg meat for beef and 0.26 L/kg meat for sheep). However, 

blue water losses due to evapotranspiration from irrigated pasture continue to be the greatest contributor 

to water shortages despite a relatively small area of irrigated farmland.   

In addition to their pressure on water resources, New Zealand pasture farms are also generally 

net GHG emitters. Approximately half of New Zealand total GHG emissions come from agriculture, 

including methane (CH4) from enteric fermentation in ruminant livestock and nitrous oxide (N2O) 

emissions from urine, dung, and nitrogen fertilisers (Leahy et al., 2019). Since agricultural emissions 

are not priced, interventions to reduce biogenic GHGs are optional. These solutions can include 

changing farming practices such as reducing stocking rates, improving productivity per animal, or 

reducing the frequency of milking. Additionally, farms may partially offset their emissions through 

carbon sequestration in soils (although its net effect on New Zealand remains uncertain) and planting a 

portion of the farm with trees and woody shrubs (Whitehead et al., 2024). However, a 2021 survey of 

New Zealand farmers found that reducing GHG emissions is secondary compared to other 

environmental goals such as managing biosecurity, improving the health of waterways, and reducing 

soil erosion (Landcare Research, 2021). Notably, a US study found that even when soil carbon 
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sequestration is encouraged via carbon offset credits, farmers still consider this only as an add-on to 

their already-implemented sustainable practices due to the burdensome and unpredictable nature of 

these credits (Barbato & Strong, 2023).  

2.2. The impact of water -carbon cycle on farm economics  

While farms have substantial environmental footprints, the reverse is also true- the environment 

significantly shapes farm economics. Given the farming industry’s reliance on water availability and 

the water cycle, droughts can pose significant impacts on farms’ economics performance.  

The economic impact of droughts and climate change-induced drought risk in the agricultural 

sector is a well-documented topic (Pourzand, 2023; Pourzand et al., 2020; Timar & Apatov, 2020). The 

consequences of droughts are multi-faceted, but fundamentally water limitation constrains plant growth 

and leads to shortage of pasture feed and reduced output. Farmers may adopt various strategies to 

mitigate these effects and protect their profits, such as purchase supplementary feed, reduce herd size, 

lower inputs per cattle - though this could lead to reduced outputs, and cut or delay spending. Also, the 

impact of droughts can be mitigated by timely weather forecasts or favourable market conditions. A 

widespread drop in agricultural production can drive up the commodity prices as was the case with the 

2013 NZ nation-wide drought. In the aftermath of this drought, export milk prices increased in 2014 as 

NZ is the market maker in the global dairy market (Pourzand et al., 2020).  

Droughts can pose significant impacts on economic performance of New Zealand agricultural 

farms due to their reliance on the water cycle. The impacts of droughts are multi-dimensional, but 

fundamentally they constraint plant growth and result in a shortage of livestock feed and lead to reduced 

output. However, farmers can adopt various strategies to mitigate the effects of droughts on outputs and 

consequently their profits. For instance, they can purchase additional feed or reduce their herd size by 

selling off cattle to maintain their short-term cash flows. Alternatively, they may lower inputs per cattle 

- though this could lead to reduced outputs – and cut operational expenses or delay spending to 

compensate for such losses. However, the impact of water shortage can be alleviated with timely 

weather outlooks or favourable commodity prices. In certain cases, a widespread reduction in 

production can end up increasing the commodity prices.  For example, while the 2013 drought have 

severe and costly impacts on New Zealand’s agricultural production, the milk prices increased in 2014 

as New Zealand is the market maker in this global market (Kamber et al., 2013).  

It is important to note that farmers of different land use can respond differently to droughts. 

Dairy farms typically have greater cash flow situations and greater access to banks – so they can afford 

costly drought response to maintain outputs. They are also less likely to reduce operational costs due to 

higher input systems and higher production costs. Existing research on the impacts of droughts on 

farms’ economics (Timar et al, 2020; Pourzand 2023; Kendon et al., 2021) find conflicting results. Bell 

et al. (2021) finds a positive link between soil moisture and farm profits, with low soil moisture (more 
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droughts) having an intermediate impact on dairy farm profits but lagged effects on sheep and beef 

farms.  Pourzand (2023); Pourzand et al. (2020), however, observe that droughts can have an associated 

positive impact on gross income and profit, particularly in major dairy farm regions (e.g., Waikato and 

Taranaki) where drought causes an increase in milk price, meanwhile, sheep/beef farms’ gross income 

and profit were negatively affected by droughts across most farming regions.   

Timar and Apatov (2020) find that increasing drought leads to lower gross output and 

intermediate expenditure in dairy farms, along with rising current debt and declining taxable profit per 

hectare. For sheep and beef farms, droughts were associated with reduced output and intermediate costs 

but no impact on debt or profit. For forestry plantations, extreme or recurrent drought events can lead 

to stress on forests and affect their overall health and growth rate, thus leading to slower generation of 

wood logs or NZUs. Further, a climate stress testing for agriculture lending (RBNZ, 2023) shows that 

a one-year drought could leads to 8 percent in dairy loan defaults and 7 percent in sheep and beef 

defaults as compared to the baseline case, and the two-year drought could lead to doubling that of the 

one-year drought. A common theme across these analyses is the use of soil moisture deficit or potential 

evapotranspiration deficit as a proxy for droughts (Porteous & Mullan, 2013). This indicator accounts 

for surface water (e.g., rainfall and potential evaporation) and plant water capacity, but excludes below-

ground water sources and irrigation.  

Since agricultural emissions have not been priced by the NZ government, the primary way the 

carbon cycle impacts farm economics is through carbon sequestration and food and wood production. 

Carbon sequestration is the process of capturing and storing CO2 in vegetation and soils via 

photosynthesis. For forestry plantations, carbon sequestration is directly monetarised via NZ ETS. 

Forestry farmers can enter NZ ETS as standard forest (harvest + ETS) or permanent forest (ETS only). 

For standard forests, two accounting methods can be used: Under carbon stock-change, participants can 

earn NZUs as trees grow and surrender NZUs upon harvesting or deforestation, while for averaging 

accounting, participants can receive NZUs as the forest grows up to a pre-determined average level and 

will face no liabilities at harvest if forest is replanted (Acosta et al., 2020). Of these, the carbon stock-

change imposes higher financial risk due to uncertainty in future carbon price. Meanwhile, permanent 

carbon forestry is a more attractive option due to a combination of significantly lower up-front costs 

and a longer period of carbon revenues (Manley, 2023). Native forests earn substantially less carbon 

credits than exotic plantation forest since they grow more slowly. In 2024, a policy change was proposed 

to avoid exotic forests permanently locking up productive land by (a) excluding exotic forests from the 

NZ ETS and (b) temporarily restricting land-to-forestry conversions on productive land but has not been 

implemented yet (as of June 2025).  

New Zealand pastoral farms are generally perceived as a net contributor to the carbon cycle. At 

least half of New Zealand’s greenhouse gas emission profiles come from agriculture, primarily methane 

from livestock digestive systems and nitrogen emissions from urine, dung and nitrogen fertilisers. As 
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aforementioned, farms biological GHG emissions are not currently priced, but pastoral farms can enter 

earn from carbon sequestration by registering to the NZ ETS if the forested area is at least 1 ha, the land 

area covered by tree canopy is at least 30%, and trees reach at least 5 m in height at maturity. While 

soil carbon sequestration is not yet recognised for NZUs as an income stream, it can lead to co-benefits 

such as improved soil quality and ecosystem functions or services, improving water and nutrient 

retention capacity, reducing erosion risk and non-point source pollution, and reduced reliance on 

synthetic inputs. Higher soil organic carbon also means higher dry matter (food supply) available for 

grazing animals. Previous analyses have shown a strong correlation between modelled DM and total 

national milk solids production, with an R² of 0.86 over a 5-year period (2006–2012) and a moderate 

correlation (R² = 0.46) over a 15-year period (Keller et al., 2014).  All together, they contribute to 

improved farm economic outcomes in long term (Lal et al., 2015).  

Offsetting biological GHG emissions can indirectly benefit pastoral farm economics. Fleming et 

al. (2019) finds that NZ farms with higher productivity tend to have lower emissions and higher profits, 

and thus a combination of lower stocking rates and higher animal productivity appears to offer an 

effective, cost-neutral mitigation strategy. Similarly, Flaten et al. (2019) find a statistically significant 

relationship between higher profitability and lower GHG emissions among Norway farms. Reisinger et 

al. (2017) examined a range of options to reduce biological GHG emissions on-farm and find that these 

solutions come with varied profitability implications. For dairy farms, options such as once-a-day 

milking (as opposed to multiple times per day) or reducing stock rates can be cost-neutral or even 

increase profitability, but on-farm forestry may reduce profits. For sheep and beef farms, mitigation 

options are more limited with on-farm forestry being the primary option, yet its associated cost is less 

than that of dairy farms.  

The Reserve Bank of New Zealand’s 2023 climate stress testing revealed important insights into 

the agricultural lending’s exposure to agricultural emissions pricing (RBNZ,2023). The analysis 

showed that an emissions price of NZ$15 per tonne would increase product prices by approximately 

NZ$0.15 per kgMS for dairy, NZ$0.20 per kgCEW for beef, and NZ$0.30 per kgCEW for sheep. At 

this $15 carbon price level, it is sufficient to meet the 10% emissions reduction target by 2030 but the 

impact on farm profitability was relatively limited. Across participating banks, there was only a 

marginal increase in the share of dairy and sheep and beef loan exposures deemed unprofitable. 

However, under a NZ$50 per tonne, a price that aligns more closely with the NGFS Delayed Transition 

scenario for 2050, the proportion of unprofitable loans rose significantly. Specifically, 14% of dairy 

farm exposures and 44% of sheep and beef exposures were projected to become unprofitable, compared 

to baseline levels of 6% and 15%, respectively. 

International studies have also pointed to a clear water-carbon-economic interrelationship in 

agricultural sectors. Berazneva et al. (2019) assess the relationship between soil carbon sequestration 

and farm economics in context of smallholder maize farmers in Kenya. They find that when using a 
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“climate-smart” agricultural practice that combines mineral fertilizers with organic resources, it is 

possible to boost maize yields while increasing or maintaining soil carbon stocks. This is translated to 

a shadow price of soil carbon ranged from $95 to $168 per Mg of carbon depending on the discount 

rate applied. Jackson et al. (2005) documents the trade-off between water and carbon in global 

biological carbon sequestration, where monoculture plantations, while maximise carbon sequestration 

and centre in climate policy, have considerable impact on surface water availability and degrade soil 

quality. Chisholm (2010) consider the economic implication of this trade-off in South Africa forestry 

farms and find that afforestation appears viable to the forestry industry under current water tariffs and 

current carbon accounting legislation but would appear unviable if the forestry industry were to pay the 

true cost of water used by the plantations. Tang et al. (2019) look at the mixed crop-livestock farming 

in China and find that the optimised agricultural farms move towards cropping-dominated farming and 

crop-livestock farmers may reduce their on-farm GHG emission by 16% to 33% with marginal 

abatement costs not higher than AU$20/t CO2e and AU$30/t CO2e, respectively. Using farm-level data 

from Italian farms, (Coderoni & Vanino, 2022) find that a higher carbon productivity indicator, defined 

as the amount of agricultural gross production value per unit of GHG emissions, is positively associated 

with higher farm net value added. Importantly, this relationship is non-linear and varies across farm 

types, suggesting that the economic benefits of improving carbon efficiency depend on the structure 

and characteristics of the farm.  

Moving beyond agricultural sector, there have been several other studies aiming at understanding 

the economic impact of water-carbon cycle. WWF (2023) find a high cost of the cheap water, where 

the total use value of freshwater is approximately to 58 trillion USD or 60% of global GDP, and 

agriculture stands out as the largest water user and account for 70% of global extracted water. Of which, 

direct use via industry, agriculture and municipalities, hydropower, recreation, inland transportation and 

freshwater fisheries only contributes 7.5 trillion USD, but indirect use, via environmental regulation, 

biodiversity, and extreme event protection, is 50 trillion annually or 7 times more value than direct use. 

Dolan et al. (2021) employ a coupled global hydrologic-economic model with basin-level resolution to 

calculate the loss of economic surplus due to water basis, and find that dependent on scenario 

assumptions, major basins can experience strong negative or positive economic impacts due to global 

trade dynamics and market adaptation.  UNEP FI (2023) introduced a drought stress testing for major 

financial institutions around the world to incorporate droughts in their credit mortgage portfolios. The 

implementation of this tool on a Brazil portfolio, for instance, show that 65%-70% of companies credit 

rating will be downgraded in a drought scenario and drought will increase portfolio loss by 1.5x and 

2x.  

Meanwhile, the economic values of carbon sequestration and emissions are a well-documented 

topics in climate mitigation studies. Unlike water, carbon is already a commodity, and several proxies 

can be applied for carbon costs. This includes the “social cost of carbon” (the monetary damages caused 
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by an incremental tonne of greenhouse gases emissions, encompassing environmental and social costs 

used to inform climate policy), the “marginal abatement of carbon” (the monetary cost of reducing an 

incremental tonne of emissions to meet a particular emissions target at least cost to society), and “market 

price” (carbon tax or carbon price on the emission trading schemes) (Rennert et al., 2022). Currently, 

the “market price” of carbon emissions remains relatively insufficient. The carbon market, although 

expanding, only covers ~24% of global GHG emissions via 75 pricing instruments (carbon tax and 

ETS). Only seven pricing instruments, covering <1% of emissions, reached the minimum price levels 

consistent with the 2oC pathway (US$63-127 per tCO2e) (World Bank, 2024). It is critical to 

understand this gap and choose an appropriate value proxy when accounting for the economic benefits 

of the carbon-cycle. 

3. Data and empirical specification  

3.1. The Baseline Model  

To examine the direction and mechanisms through which water and carbon cycles influence farm 

profitability, we adopt a flexible reduced-form econometric framework and estimate the following panel 

data model for each land use type (dairy, sheep and beef and forestry farms): 

𝑌𝑖𝑚𝑡 = 𝛼 + 𝜷𝟏𝑪𝒂𝒓𝒃𝒐𝒏𝒎𝒕 +  𝜷𝟐𝑾𝒂𝒕𝒆𝒓𝒎𝒕 + 𝜏𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑡  + φ𝑅𝑒𝑔𝑖𝑜𝑛𝑘

+ 𝜎𝑌𝑒𝑎𝑟𝑡 + 𝜀𝑖𝑡 

(1)  

Where: 𝑌𝑖𝑚𝑡 is a proxy for farm profitability for farm i operate on a land mesh-block m at the fiscal year 

end t. 𝐶𝑎𝑟𝑏𝑜𝑛𝑚𝑡 is one of the carbon indicators that represents the pastoral dry matter and forestry net 

primary productivity. 𝑊𝑎𝑡𝑒𝑟𝑚𝑡 is the surface soil moisture deficit. 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑡 denotes a set of 

geographical/agroclimatic/price/farm characteristics covariates; 𝑅𝑒𝑔𝑖𝑜𝑛𝑘 is a vector of regional 

dummies for other unobserved time-invariant characteristics at regional-level such as regional policies 

and industry bodies; 𝜎𝑌𝑒𝑎𝑟𝑡   is a vector of year fixed effect to control for unobserved industry-wide 

shocks, such as supply chain disruption and COVID-19 and 𝜀𝑖t is an unobserved county-specific 

disturbance term. 𝜷𝟏 and 𝜷𝟐 captures the marginal effect of carbon- and water-cycle on farm profit, 

respectively. A description of key variable definitions is captured in Appendix Table 1.  

3.2. Data  

Farm-level agriculture activities and financial data  

We rely on a unique dataset of farm’s Agricultural Production Statistics (APS) survey, retrieved from 

Statistics New Zealand’s Longitudinal Business Database, to explore information on agricultural 

production on farms and forests. APS is a long-standing and large-scale survey programme conducted 

by MPI and STATS New Zealand aiming at collecting official statistics on agricultural and forestry 

production. APS is produced annually including a full census every five years, and a survey with a 

stratified sample size that aims at out of the three farming enterprises conducted in intervening years. 
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The survey population includes all businesses included in the Statistics New Zealand’s Business 

Register as having agricultural activity, thus mainly include businesses classified in agriculture, and 

forestry sector (exclude native forest) but also parts of other sectors (e.g., scientific research, education, 

non-residential properties, and conservation parks) that are partly involved in farming. Respondents 

include businesses primarily operate in agricultural and forestry activities (excluding native forest) as 

well as those from other sectors. The APS collects a wide range of information, such as farm location, 

land details, livestock herd-size, land-use activities, farm management practices such as fertiliser use 

and irrigation practices, forestry practices such as cubic meter of wood production or harvested exotic 

forest area awaiting restocking. Some survey questions related to planted exotic production forests was 

discontinued over time and is included in the National Exotic Forest Description survey.  

For this study, we restrict our analysis to a ten-year period from 2003 to 2022. This period is 

long enough to capture inter-annual variation in farm practices and outcomes, while short enough to 

avoid major structural changes in data collection or infrastructure and land-use policies. Four census 

years are included in this sample, namely 2007, 2012, 2017 and 2022. Our starting point is all farms 

whose primary activities are in pastoral agriculture and forestry following in the Australian and New 

Zealand Standard Industrial Classification ANZSIC 6-digit codes. Specifically, sheep and beef farms 

include codes 0141 (sheep farming), 0142 (beef cattle farming), 0143 (beef cattle feedlots), and 0144 

(mixed sheep–beef farming). Forestry farms include 0301 (forestry) and 0302 (logging), encompassing 

both permanent and production carbon forests. It should be noted that while farms are classified by 

primary activity, many engage in mixed land use, including combinations of pasture, horticulture, and 

forestry. Since farms are geo-identified with Stats NZ mesh-blocks (e.g., the smallest geographic unit 

that represents around 30-60 dwellings or 60-120 residents), and multiple farms can form a farming 

enterprise that spans across several farms and several mesh-blocks – we restrict our sample to farming 

enterprise located within one mesh-block only. However, similar to Timar and Apatov (2020), we keep 

farms whose meshblock changes over time, as we are unable to see whether  these changes reflect 

genuine changes in locations, administrative change or purely data errors4.  In the dairy sector, such 

changes are likely influenced by Moving Day on 1 June, the start of winter, when an estimated 5,000 

farming families relocate to new farms to begin new sharemilking contracts. Finally, we restrict our 

sample to farms with at least one hectare of total land use.  

We then link the APS survey with the IR10 dataset, also from the Statistics New Zealand’s 

Longitudinal Business Database using the farm enterprise ID. This dataset collects all financial 

statement return of all enterprise in New Zealand, with a vast majority of businesses using 31 March, 

31 May, and 30 June. We employ taxable profit per hectare as our main indicator of farm profitability 

as it allows comparison across land-use and accounts for heterogenous in farm scales. For channel 

 
4 See Appendix S2 for a breakdown of farms associated with multiple meshblocks.  
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analysis, we use a range of additional economic outcomes to understand the transmission from water-

carbon cycles to farms economics. This includes gross outputs (e.g., total income minus stock 

adjustment), intermediate expenses (e.g., total purchase expenses minus depreciation and interest 

expenses and covering fertilisers, supplemental feeds, and irrigation costs) and current loans (e.g., the 

amount of loans outstanding that are repayable within one year). Respectively, these three indicators 

represent the revenue, cost and liability side and signifies how farms respond to changes in water-carbon 

cycles. All economic outcomes are adjusted to real term using the Consumer Price Index (CPI), 

expressed in NZ dollars as of December 2024. Dollar values are normalised using hectare of land areas 

and all extreme values are winsorised on under 1st or above 99th percentile.  

Carbon and Water Cycle  

Annual average outputs from the Biome-BGC model are used as proxies for the spatial and temporal 

dynamics of carbon flows between ecosystems and the atmosphere across different land uses (see Fig 

1). Carbon fluxes and storage in grasslands and exotic and indigenous forests were modelled with the 

Biome-BGCMuSo v6.1 model (Hidy et al., 2022; Hidy et al., 2016)). The BGCMuSo model is a 

terrestrial ecosystem process model that simulates the biological and physical processes controlling 

fluxes of carbon, nitrogen (N) and water in vegetation and soil in terrestrial ecosystems. It was originally 

developed for North American forests (Running & Coughlan, 1988; Running & Gower, 1991; Thornton 

et al., 2002; Thornton et al., 2005) but has undergone significant development in the past decade to 

include multiple soil layers, improved representation of the water cycle, and the simulation of managed 

crop and pasture systems. We previously adapted the original Biome-BGC model to New Zealand 

pasture systems (Keller et al., 2014). The BGCMuSo model represents a significant advance on 

previous versions. Among the improvements include the addition of management modules for 

grasslands, croplands and forest (such as harvesting, mowing, grazing, etc), a multi-layer soil module 

(as opposed to just one layer), soft-stem carbon and nitrogen pools, and implementation of plant 

senescence (Hidy et al., 2016). Soil hydrology has also been significantly improved (Hidy et al., 2022). 

The Biome-BGC model was run on a daily time step at a 0.05o grid resolution (~5.6 km x 4.2 

km) for all of New Zealand. Climate inputs include daily minimum and maximum air temperature, 

precipitation, vapour pressure deficit, and solar radiation, using the downscaled Coupled Model 

Intercomparison Project Phase 6 (CMIP6) outputs. Site-specific soil information (texture, pH, and 

rooting depth) comes from the Fundamental Soil Layers database (Manaaki Whenua – Landcare 

Research, 2010), which has been re-gridded to match the climate input data.  For pastoral farms, 

eighteen eco-physiological model parameters for two types of New Zealand pasture systems (“dairy” 

and “sheep/beef”) were calibrated using eddy covariance data from five sites across New Zealand, with 

an additional five sites available for validation (Villalobos et al., 2023). All sites had at least one full 

year of data available, and most had three years or more. The parameters were optimized to produce the 

best match between observed and modelled weekly mean net primary productivity (NEP), gross primary 
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production (GPP), Ecosystem Respiration (Re), evapotranspiration (ET), and 10 cm soil moisture 

content (SMC) using the PEST software package (Doherty, 2015). To represent exotic forests (pine 

plantation forests), we used the built-in evergreen needleleaf forest biome, but these biome parameters 

were not optimized for New Zealand due to the lack of suitable eddy covariance data. Instead, default 

parameters were used. A full description of the calibration methodology and results is the subject of a 

forthcoming paper (Keller et al., in prep). 

For carbon-cycle, dry matter yield (DM), measured in kilograms of dry matter per hectare per 

year (kg DM/ha/year), is used as a proxy for pastoral farms as it reflects the spatial variations in pasture 

growth or grass available as food for grazing animals. DM yield is converted from net primary 

production or the amount of carbon retained in an ecosystem via the ratio of above-ground to below-

ground allocation by the inverse of the new fine root. As for forestry farms, we rely solely on net 

ecosystem production (NEP) from evergreen broadleaf forest, in grams of carbon per square meter per 

year (gC/m²/year), as a proxy for potential carbon sink from vegetation and soils from exotic forests. 

indicates farm-level carbon sequestration (but does not include the biological GHG emissions from 

cattle and sheep). It should be noted that net ecosystem production and carbon sequestration are not 

necessarily equivalent as the latter term implies a longer-term sink while the modelled NEP is a transient 

term. Further, in international application of Biome-BGC for managed forests, wood production amount 

can also be simulated based on the tree growth rates, however this module has not been available in 

New Zealand context.  We hypothesize that higher DM yield will lead to higher profit for pastoral farms 

while higher NEP may lead to higher profits for forestry farms. DM yield is transformed using natural 

logarithm to remove the effect of extreme values, while NEP (which can be negative that indicates 

emission source) is winsorised by 1st – 99th percentile.  

For water-cycle, we employ soil moisture potential evapotranspiration deficit (PED), measured 

in topsoil to 90 cm depth and in mm/month and represents the amount of rain needed to bring the soil 

moisture content back to field capacity. Soil PED is modelled in Biome-BGC model a 1km grid 

resolution for the period 2013-2022 as a function daily weather (temperature, precipitation), land 

covers, and soil texture and is the difference between field capacity and soil water content of that day. 

A soil PED value of 0 means that the soil is fully saturated, while a soil PED value that is closer to field 

capacity mean that the soil is very dry. Soil PED is effectively served as a surface water availability 

indicator and is a universal value across pastoral and forestry farms. 
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Dairy pasture DM (2003)  

 
Dairy pasture DM (2022)  

 
Change in dairy pasture DM (2022-2003)  
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Sheep and beef pasture DM (2022)  

 
Change in sheep/beef pasture DM (2022- 2003)  

 
Exotic forestry NEP (2003)  

 
Exotic forestry NEP (2021)  

 
Change in exotic forestry NEP (2021 – 2003)  

 
Soil moisture deficit (2003)  

 
Soil moisture deficit (2022) 

 
Change in soil moisture deficit (2022 - 2013) 

Figure 1 The spatiotemporal variation in water-carbon-cycle across New Zealand. Estimates from the BGCMuSo-Biome 

model. Panel (a) shows pasture dry matter (DM) production for dairy farm systems; panel (b) shows pasture DM for sheep and beef 

systems; panel (c) presents net ecosystem production (NEP) from evergreen broadleaf forests; and panel (d) depicts soil moisture 

deficit.  Each panel displays annual averages for the beginning and ending year and the difference  
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For robustness test, we also explore outputs from a set of national groundwater models, including the 

GNS national groundwater recharge model at 1 km grid resolution (Westerhoff, White, & Rawlinson, 

2018) and the GNS national water table model at 200 m grid resolution (Westerhoff, White, & Miguez-

Macho, 2018). The first model provides the total groundwater rainfall recharge, measured in 

mm/month, simulates the total amount of rainwater that can be infiltrate into the subsurface and 

replenish groundwater resource, but the caveat is that it does not represent net groundwater availability.  

The second model provides groundwater table depth, measured in meter below the ground 

(mbg), which provides an estimated table depth in main alluvial aquifers. A limitation is that these 

models only capture historical records of total groundwater recharge in the first half of sample (2003-

2013) and a steady-state groundwater table (snapshot as of 2018), therefore limits in capturing temporal 

changes in groundwater availability over the sample period. 

Control Variables  

To alleviate plausible concerns about omitted variable bias, we augment the baseline model with several 

attributes that represent geographic/agroclimatic condition, farm characteristics, and global market 

signals. It is plausible that other than carbon-water other characteristics of the land parcels where farm 

is located help shape the farm economics outcomes, including land-use capability, soil particle size, 

distance to nearest town, elevation above the sea level. Therefore, the inclusion of these 

geographic/agroclimatic conditions can help rules out the possibility that our findings are exclusively 

driven by these potential confounding factors. In addition, rural industry bodies (e.g., DairyNZ,  

Beef+Lamb NZ) play a crucial role for primary industries in New Zealand, as they are known to 

advocate for knowledge and technology sharing, policy, research and community support. Therefore, 

we also control for this community effect by calculating the share of neighbour farms that are also 

operate in the same primary land-use (Timar, 2022); Timar and Apatov (2020). Farm economic scales 

such as land size and herd size (dairy cow, meat cow, and sheep) are controlled to rule out the size 

effect, in addition, the fraction of land dedicated for non-primary land-use activities is also taken into 

consideration. Finally, we also incorporate regional dummies in the regression to account for 

unobserved (time-invariant) heterogeneity across New Zealand regions, and a range of commodity price 

relevant to the primary activity of farms (e.g., FAO global dairy price index, IMF global lamb and beef 

price indices, the FRED lumber and wood product price index, and the NZU spot price index) (Bell et 

al., 2021; Pourzand, 2023; Pourzand et al., 2020).   

4. Main Result  

4.1. Data Description  

The New Zealand national farm dataset includes 387,009 annual observations from 95,532 

distinct farms over a 20-year period (2003-2022). This includes 245,322 annual observations from 
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sheep and beef farms, 107,583 from dairy farms, and 34,104 from forestry farms: or 57,369 distinct 

sheep and beef farms, 29,520 distinct dairy farms, and 8,643 distinct forestry farms. Fig.2 depicts the 

number of farms across their primary land-use activities over time. As expected, we observe peaks in 

the census years and dips in between, especially in the global financial crisis period 2008-2009 and the 

Covid period 2019-2020. There is a noticeable sharp decline in the number of farms, particularly sheep 

and beef farms, in the 2012 census year. This number rebounds by 2017, followed by a slight decrease 

again in 2022.  This pattern may be due to our sample restriction process, where we include only farming 

enterprises located within a single meshblock and those that report their total hectares of land use. 

However, it may also reflect variation in survey response rates or an organic decline in farm numbers. 

A cross check with Statistics New Zealand report confirms that the nationwide APS response rate was 

80% in 2007, 84% in 2012, 84% in 2017, and drop to 73% in 2022. At the same time, there is a steady 

national decline in farm numbers by 33% from 2002 to 2022 (from 70,336 in 2002 to 58,068 in 2012 

to 47,250 by 2022) (Stats NZ, 2023). This decline likely reflects aging farmers existing the business, 

difficulties in generational turnover, land use conversion, and further a broader trend of farm business 

consolidation (Landcare Research, 2021). 

 

Figure 2 Number of farms by land-use type over time in the national dataset. This figure depicts the number of farms 

responded to the Agriculture Production Survey over time. Farm type is characterised based on primary land-use activities 

using ANZSIC 6-digit codes.  

 

Figure 3 Number of farms by land-use type by region. This figure depicts the number of farms responded to the 

Agriculture Production Survey by sixteen regions. New Zealand is divided into sixteen regions for local government purposes.  

Farm type is characterised based on primary land-use activities using ANZSIC 6-digit codes. Farms are geolocated to their 

regions based on their Stats New Zealand mesh-block IDs.  
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(a) Farm median economic outcomes in original values  

 

(b) Farm median economic outcomes normalised by land use hectare  

 

(c) Relevant commodity price over time  

 

Figure 4 Farm economics over time. This figure depicts the median farm economic outcome over time by different 

land-use types. Panel (a) shows the absolute economic values per farm, while panel (b) presents these outcomes normalized 

by total land area in hectares for the ease of comparison across farm size. Additionally, panel (c) provides data on the number 

of farms with available financial statements (IR10), alongside a depiction of relevant commodity prices over time. All dollar 

values are presented in real terms, adjusted to December 2023 dollars using the Consumer Price Index (CPI). 

Fig. 3 depicts the distribution of farms across regions. From this figure, we find that New 

Zealand’s agricultural farm landscape is diverse with farming activities vary significant across regions 

due to geographic and agroclimatic condition. Sheep and beef farms dominate the national landscape, 

particularly in the South Island- most notably in Canterbury, Otago, and Southland- as well as in parts 

of the North Island, such as Manawatu–Whanganui and Northland. In contrast, dairy farming is a major 

agricultural activity primarily concentrated in the North Island, especially in Waikato and Taranaki, and 
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to a lesser extent in Canterbury in the South Island. Plantation forestry farms are distributed across both 

islands, reflecting broader land-use diversification.5 

Fig. 4 illustrates the changes in median economic outcomes for farms across different land-use 

types. Panel (a) shows that dairy farms, due to several years of strong profits, tend to operate at a 

significantly larger economic scale than sheep/beef and forestry farms. The median dairy farm generates 

between NZ$632,000 and NZ$1,500,000 in gross output, equivalent to approximately NZ$3,500 to 

NZ$7,000 per hectare. In contrast, the median sheep and beef farm operates at a smaller scale, with 

gross output ranging from NZ$111,000 to NZ$312,000, or around NZ$900 to NZ$1,600 per hectare. 

Forestry farms exhibit considerable variation over time, with median gross output ranging from as low 

as NZ$250 to as high as NZ$68,900, or NZ$3 to NZ$1,000 per hectare.  

Panel (b) shows an overall upward trend in farm profit after adjusting for land use area. There 

is, however, substantial year-to-year fluctuation in farm profit, and this appears to be largely driven by 

fluctuations in revenue sides as compared to relatively stable total and intermediate expenses that 

closely track one another. Dairy farms continue to be the most profitable land-use type as compared to 

sheep/beef and forestry farms and also appear to be more highly leveraged with higher levels of current 

loans. Notably, there seems to be a structural shift in the financial outcomes and loan levels of forestry 

farms after 2014. While the exact cause is unclear, this shift may be linked to reforms in the New 

Zealand Emissions Trading Scheme (NZ ETS), including the Climate Change Response (Unit 

Restriction) Amendment Act in 2014 and the formal delinking from the international Kyoto market in 

mid-2015 to establish more effective emission pricing scheme. In anticipation of delinking, NZ ETS 

participants began stockpiling (or “banking”) NZUs for future use while meeting most of their current 

surrender obligations with cheaper international Kyoto units. This could drive up demands for NZUs 

held by forestry farms and lead to an increase in carbon revenues.  

Panel (c) illustrates the evolution of commodity prices over time. Dairy prices exhibit 

significant volatility, fluctuating by a factor of two to three, which appears to be a key driver of changes 

in gross output for dairy farms. In contrast, sheep and beef farms show a mixed pattern: while global 

beef prices have trended upward, global lamb prices have declined over the study period. For forestry 

farms, a sharp rise in lumber and wood prices, combined with a gradual increase in the price of New 

Zealand Units (NZUs), appears to have supported improvements in farm profitability. These price 

movements likely contributed to the shift in forestry farm profitability, with median profits turning 

positive in the second half of the study period.   

 

 
5 Appendix S3 depicts the spatial distribution of these land-use activities using the Land Use and Carbon Analysis System (LUCAS) map 

using a snapshot of December 2020.  Appendix S4 depicts the number of farms across land-use types within each region, where a 
consistent downward trend in farm counts continues to be observed at regional level. 
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4.2.  Summary Statistics  

Table 1 contains summary statistics of key variables6. As previewed earlier, this table confirms that 

dairy, sheep and beef, and forestry farms operate under distinct economic and operational conditions. 

The median dairy farm operates on a land size of 160 ha with 334 cows, generating NZ$5,238 per 

hectare in gross output and NZ$423 in taxable profit while spending NZ$3,524 in intermediate expense 

and borrowing NZ$1,359 in current loans. The median sheep and beef farm has a smaller land area (120 

ha) and a herd size of 48 beef cows and 121 sheep, but they manage significantly larger operations at 

the upper end (around 5675 hectares, 1537 beef cattle, and 1,000 dairy cattle and 13,200 sheep at the 

99th percentile).  Sheep and beef farms tend to operate at a smaller economic scale compared to dairy 

farms, with a median gross output of NZ$1,265 per ha, intermediate expenses of NZ$1,144 per ha, 

taxable profit of NZ$29 per ha, and current loans of NZ$442 per ha. Forestry farms tend to be smaller 

in land size (51 ha) and generate negative profit (-NZ$106 per ha) with smaller gross output scale 

(NZ$289 per ha), yet on the upper end, they are as comparable as dairy farm in term of economic scale 

and profit. Forestry farms exhibit the most variation in term of their operation/ economic scales 

(signified by a high standard deviation in land use and economic outcomes).  

Levente (2020) finds that geographical and agroclimatic conditions are among the key factors 

that influence land-use decisions. The trends depicted in Table 1 largely support this finding although 

some differences emerge to some certain extent. Dairy farms tend to occupy land with closer proximity 

to town, land with smaller soil particle, higher land-use capability, flatter terrain and in areas with more 

neighbouring dairy farms.  Sheep and beef farms, by contrast, typically operate on land further from 

town, land with bigger soil particle and with moderate land-use capability, in areas with steeper slopes. 

However, neighbourhood effects are less pronounced for sheep and beef farms: Dairy farms are more 

frequently located in mesh-blocks with a higher proportion of surrounding dairy activity (13%) 

compared to sheep and beef farms (1%) and forestry farms (0%). In contrast, sheep and beef farms tend 

to be in mesh-blocks where only 22% of land is used for the same purpose, compared to 25% for dairy 

farms and 19% for forestry farms. Plantation forests usually located on the remote areas with large soil 

particle, steeper slopes, lower-quality land and are more commonly found in regions with higher forest 

cover (both native and plantation forest), suggesting a strong neighbourhood effect (38%).  

We also find that dairy farms tend to be more recently established (with younger farm age), 

whereas forestry farms are generally older and more likely to self-identify as Māori-owned businesses. 

However, this Māori ownership indicator is only available for approximately 2% of farms, which limits 

the reliability of this comparison. Farms often engage in multiple land uses alongside their primary 

activity, such as growing crops or establishing forestry plantations on pastoral farms or retaining areas 

of bush or scrub land that are not actively exploited.  In terms of farm inputs, the average farm,  

 
6 Appendix S5 shows variables’ definition and data sources. 
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Table 1 Summary statistics  

In accordance with Statistics New Zealand’s confidentiality rules, all observation counts are randomly rounded to the nearest 3, and summary statistics are suppressed when based on fewer than 6 observations. Soil moisture data is 

measured monthly to a depth of 0–90 cm; we use the annual average of monthly soil moisture deficit. Rainfall recharge data is originally provided as monthly values from 2000 to 2014; we use the annual total over that period. Forestry 

data (e.g., harvested volume, harvested area, new planting) is only available for years prior to 2019. Fertiliser data is available from 2011 onward. Irrigation data is available only for selected years: 2007, 2012, 2014, 2017, and 2018. 

Financial data is available only for specific time periods, depending on IR filing records. 

Stats 

Number of observations  

  Median     1st Percentile   99th Percentile   Standard Deviation   

Land use Type Dairy SnB Forestry Dairy SnB Forestry Dairy SnB Forestry Dairy SnB Forestry Dairy SnB Forestry 

Operational scale                     

Total land use (ha) 107,583 245,322 34,104 160 120 51 4 2 2 1,173 5,675 3,221 298 1,718 1,114 

Beef (lsu) 103,038 242,244 32,157 0 48 0 0 0 0 439 1,537 239 101 371 81 

Dairy (lsu) 107,094 230,241 31,596 334 0 0 0 0 0 2,259 1,000 90 479 249 45 

Sheep (lsu) 100,947 238,515 32,034 0 121 0 0 0 0 1,564 13,200 1,585 426 2,982 556 

Harvested wood (m3) 85,926 193,800 25,362 0 0 0 0 0 0 172 1,000 30,199 1,809 1,673 20,254 

Economics outcome per ha                     

Taxable profit per hectare (NZ$/ha)  80,967 182,895 23,250 423 29 -106 -5,640 -10,981 -10,981 11,450 19,956 19,956 2,608 3,412 4,022 

Gross output per hectare (NZ$/ha)  81,573 184,200 19,881 5,238 1,265 289 -995 -869 -471 53,816 68,988 68,988 8,483 9,656 10,549 

Intermediate expense per hectare 

(NZ$/ha)  
81,768 185,085 23,478 3,524 1,144 405 17 15 2 34,489 41,765 41,765 5,355 5,960 5,735 

Current loan per hectare (NZ$/ha) 80,775 174,168 20,175 1,359 442 248 0 0 0 67,692 115,469 115,469 12,822 17,016 18,524 

Farm characteristics                     

Farm age (year)  106,920 245,013 34,056 13.0 16.0 17.0 0.0 0.0 0.0 36.0 37.0 44.0 10.0 10.2 10.0 

Māori business indicator (yes/no)  3,189 5,445 906 0 0 1 0 0 0 1 1 1 0 0 0 

Farm spatial characteristics                     

Distance to town (km)  103,554 232,395 32,004 9.1 11.6 11.8 0.4 0.4 0.3 50.7 54.0 54.7 10.6 12.9 12.8 

Mean soil class (1-8) 103,548 232,380 32,004 3.0 4.0 4.0 0.0 0.0 0.0 8.0 8.0 8.0 2.1 2.2 2.5 

Mean slope (1-8) 95,001 212,403 27,678 1.0 3.0 4.0 1.0 1.0 1.0 7.0 7.0 7.0 1.8 2.0 2.0 

% neighbour land for dairy 107,583 245,322 34,104 13% 1% 0% 0% 0% 0% 50% 38% 29% 11% 9% 6% 

% neighbour land for sheep/beef 107,583 245,319 34,104 25% 22% 19% 0% 0% 0% 67% 57% 50% 14% 12% 12% 

% neighbour land for forestry  107,583 245,322 34,104 18% 26% 38% 0% 0% 0% 66% 72% 80% 18% 20% 23% 

Land use on farm                     

Grassland/ tussock land (%) 107,583 245,322 34,104 94% 90% 0% 14% 0% 0% 100% 100% 100% 15% 20% 26% 

Forestry land (%) 107,583 245,322 34,104 0% 0% 81% 0% 0% 0% 19% 25% 100% 4% 6% 35% 

Horticulture land (%) 107,583 245,322 34,104 0% 0% 0% 0% 0% 0% 46% 62% 45% 9% 11% 8% 

Bush/ scrub land (%) 107,583 245,322 34,104 0% 0% 0% 0% 0% 0% 46% 67% 96% 9% 14% 22% 

Farm management practice                     

Fraction of irrigation total (%) 49,377 104,649 15,231 0% 0% 0% 0% 0% 0% 100% 96% 31% 27% 16% 8% 

Fertiliser use (tonne) nitrogen (K) 69,597 150,921 21,615 0.0 0.0 0.0 0.0 0.0 0.0 237.2 45.5 0.8 2,278.7 951.2 308.1 

Fertiliser use (tonne) phosphorus (P) 69,252 151,155 21,627 0.0 0.0 0.0 0.0 0.0 0.0 122.8 90.0 1.0 2,164.5 1,419.2 302.1 

Fertiliser use (tonne) sulphur (S)  69,135 150,606 21,600 0.0 0.0 0.0 0.0 0.0 0.0 85.0 52.0 0.5 3,906.9 2,195.2 359.1 

Water cycle                     

Monthly soil moisture deficit (0-90cm) 

(m?/year)  
100,203 223,548 29,394 0.026 0.033 0.030 -0.026 -0.018 -0.026 0.090 0.103 0.101 0.023 0.024 0.024 

Total water recharge (mm/year) 56,793 120,669 14,205 297 267 324 3 0 0 1,841 1,417 1,751 376 288 325 

Groundwater table depth (mbg) 103,551 232,383 32,007 6.09 15.14 20.24 0.00 0.04 0.00 65.39 76.36 78.88 12.61 16.71 20.68 

Carbon cycle                      

Dry matter (kg DM/ha/year) 101,703 228,138 30,573 12,477 10,102 na 7,279 6,805 na 15,436 12,033 na 1,846 1,224 na 

Net NEP (gC/m²/year) 102,237 229,161 30,684 136 32 84 -106 -122 -220 285 154 322 87 58 106 
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regardless of whether it is a dairy, sheep and beef, or forestry farm, does not typically use irrigation or 

fertiliser. However, on the upper scale, dairy farms tend to apply inputs such as irrigation water, 

nitrogen, phosphorus, and sulphur than other land uses. In contrast, sheep and beef farms generally have 

a lower environmental footprint, as their primary feed source is grazed pasture. Forestry farms, 

meanwhile, typically do not rely on irrigation or fertilisers at all. 

Finally, in relation to our main variables of interest, we find that dairy farms generally operate 

on land capable of producing approximately 12,477 kg DM/ha/year of pasture dry matter. In contrast, 

sheep and beef farms typically operate on land with around 20% less pasture productivity (10,102 kg 

DM/ha/year). In terms of net primary production (NPP), forestry farms average around 84 gC/m²/year, 

while dairy farms exhibit significantly higher values at 136 gC/m²/year, and sheep and beef farms 

average around 32 gC/m²/year. Dairy farms also tend to be located in areas with lower soil moisture 

deficits (at 26 mm/month) compared to sheep and beef (at 33 mm/month) or forestry farms (at 30 

mm/month), indicating less water stress. Additionally, they are more often situated in areas with a 

shallower groundwater table closer to the ground (6 meter below ground), which may enhance irrigation 

efficiency, as compared to sheep and beef farms (15 m) or forestry farms (20 m). However, when it 

comes to total groundwater recharge, forestry farms appear to occupy lands with higher recharge rates 

(324 mm/year), likely due to deeper root systems and lower water abstraction. 

4.3. Base Model Estimates  

Table 2 presents the base model estimate of Eq. (1). The specification from column 1 involves 

a naïve regression of dairy farms’ taxable profit per hectare on the carbon indicator, pasture dry matter, 

using pool OLS regression without controlling for any cofounding factors. In column 2, the variable of 

interest is replaced with the water indicator, soil moisture deficit, still in a naïve regression setting. All 

the main control variables, including region dummies and year dummies are incorporated in the full 

specification in column 3. We then re-estimate the full specification in Eq. (1) using fixed-effect (FE) 

estimator. All reported standard errors are clustered at the farm level to account for within-farm 

correlations and heteroskedasticity, ensuring that our inference is robust and not biased by 

underestimated standard errors or inflated Type I error rates. 

For the difference between column 3 and column 4, it is important to noted that the pool OLS 

regression rely on the assumption of strict exogeneity, that is, all explanatory variables must be 

uncorrelated with the idiosyncratic error term (𝜀𝑖𝑚𝑡) across all time periods. When this condition holds, 

the estimated coefficients of water and carbon indicators can be interpreted as unbiased and consistent 

measures of the causal relationships of interest. In practice, it is nearly impossible to identify and include 

all potential confounding characteristics in the regression models, including both observed 

characteristics and unobserved characteristics.  
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The fixed effect estimator (FE) helps reduce omitted variable bias by controlling for 

unobserved, time-invariant heterogeneity across farms such as farm management styles, business and 

supply chain model, or technology (as long as they remain constant over time).  In panel data setting, 

this moves us closer to causal inference relative to pooled OLS, especially if other biases are alleviated 

(such as omitted variable bias due to unobserved heterogeneity across time, measurement error bias, 

and simultaneity bias). However, it should be noted that FE estimates are identified solely from within-

farm variation over time. As a result, any explanatory variables that do not vary within farms (for 

instance, a long-term water table) over the study period cannot be estimated. Further, measurement 

biases can be amplified in FE models as the demeaning process using farm fixed effects may eliminate 

much of the true variation while leaving noises intact.  

 Accordingly, both pasture dry matter and soil moisture deficits enter the regressions for the 

dairy farm subset with coefficients that are sign-consistent with expectations and are mostly statistically 

significant. This lends support to the hypothesized association between the dual impact of water-carbon 

indicator on farm profit across New Zealand. The FE estimates in column 4 in Table 1 suggests that a 

1% increase in dairy pasture dry matter is associated with a NZ$5.6 per hectare increase in farm profit, 

while a 1 mm/month (or 0.001 m/month) increase in annual averages of monthly soil moisture deficit 

corresponds to a NZ$4.87 (equal to 4,868 * 0.001m/month ) per hectare reduction in farm profit, holding 

other things equal. To put these estimates into perspective, the median dairy farm currently earns 

approximately NZ$423 in taxable profit per hectare, with an average pasture dry matter of 12,477 kg 

DM/ha/year and an average monthly soil moisture deficit of 0.023 m/month (refer to Table 1). 

Therefore, a 1% increase in pasture dry matter would be associated with 1.3% increase in taxable profit, 

while a 1% increase in soil moisture deficit (or 0.26 mm/month) would reduce profit by NZ$1.26 per 

ha, equivalent to a 0.29% decrease in profit. Taken together, the beneficial effect of increased pasture 

growth on farm profits appears to dominate the adverse impact of drought conditions.  

On the subset of dairy farms, the estimated coefficient on soil moisture deficit retains its sign 

and statistical precision when several observed control variables are included in the regression, either 

individually or jointly. Similarly, the coefficient on pasture dry matter remains positive across all model 

specifications, although its statistical significance diminishes under pooled OLS, where time-varying 

farm-level heterogeneity is not controlled for. A post-estimation test on the joint significance of water–

carbon cycle variables further confirms their combined influence on farm profitability, with a Wald chi-

square statistic of 126.09 (p < 0.01). Moreover, a Hausman specification test supports the choice of the 

fixed effects estimator over the random effects model, indicating that unobserved farm-specific 

heterogeneity is correlated with the covariates. 

Column 5 to 8 repeats these specifications on the subset of sheep and beef farms. Here similar 

to dairy farms, we observe a statistically significant impact of pasture dry matter on farm profitability 
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across all models, although the strength of this significance is marginal (remaining significant only at 

the 10% level). Taking the most restrictive model in column 8, a 1% increase in pasture dry matter is 

associated with a NZ$1.8 per hectare increase in farm profit. Although the absolute profit gain is smaller 

than that observed for dairy farms (NZ$5.6 per hectare), the relative economic impact is more 

substantial when considering the lower baseline profitability of sheep and beef farms. With a taxable 

profit of NZ$29 per hectare for a median sheep and beef farm, a 1% increase in pasture dry matter 

represents a 6.2% increase in profit for sheep and beef farms, compared to only 1.3% for dairy farms. 

This suggests that changes in dry matter production is more economically significant to sheep and beef 

farms due to their less intensive input systems, while dairy farms can have supplemental feed, fertiliser, 

or irrigation to cope during these times.  

Meanwhile, the water-related indicator, soil moisture deficit, shows a statistically significant 

effect in the naïve model; however, the magnitude and significance of this effect gradually reduces once 

we control for the carbon-related indicator (pasture dry matter), other confounding factors (column 7), 

as well as farm fixed effects (column 8). Again, the negative impact of droughts seems to be dominant 

by positive effect of pasture growth. The joint significance of water–carbon cycle variables on farm 

profitability continue to be confirmed by a Wald chi-square statistic of 10.64 (p < 0.01), and the 

suitability of a FE estimator continue to be confirmed by the Hausman identification test. However, the 

overall model goodness of fit for sheep and beef farms seem to be relatively low, as the adjusted R2 is 

only 2.1% as compared to the subset of dairy farms. This may be due to the lagged nature of drought 

impacts on meat production, where the economic effects materialize only after several consecutive years 

of limited inputs, such as reduced feed availability or stock numbers.    

For forestry farms, the FE estimator appear less suitable for this subset. This is indicated by an 

insignificant Hausman test result on the null hypothesis that the preferred model is random effects vs. 

the alternative the fixed effects. In addition, the FE model (column 12) yields lower adjusted R² as 

compared to OLS model (column 11) for forestry farms. It is worth noting that the forestry farm subset 

is limited to the period 2010–2018 due to of data availability in NZU price and harvest wood volume 

data (m³). A further limitation is the heterogeneity within the forestry category, as the data do not 

distinguish between native and plantation forests, which may have substantially different economic 

characteristics. 

Across all specifications, there is no statistically significant effect of net primary production (or 

transient carbon capture) on taxable profit (see column 9,11,12). While surprising, several factors may  
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Table 2  Baseline estimates of the impact of carbon-water cycle on farm profitability  

This table presents estimates of the effect of carbon-water on farm-level taxable profit per hectare. Controls include geographical/agroclimatic attributes, farm characteristics, land use and farm practice, and 

time fixed effect, region and farm fixed effects (in a FE model). For each variable, we report the point estimates and the standard errors (in parentheses). Heteroscedasticity robust standard errors clustered at 

farm-level are reported in parentheses. A Hausman specification test is conducted to assess the difference between the fixed effects (FE) and random effects (RE) estimators. If significant, the test rejects the 

null hypothesis that individual effects are uncorrelated with the explanatory variables, indicating that the FE specification is consistent for this model. For brevity, constant terms, regional fixed effects, and 

year fixed effects are estimated but not reported. Number of observations and adjusted R2 are reported for all specifications. Especially for FE model, we also report Intraclass correlation coefficient which 

describes how much of the variation in the outcome variable is due to differences across farms, as opposed to changes over time within each farm. * p < 0.10, ** p < 0.05, *** p < 0.01. 

Sample  
 

Dairy farms 
  

Sheep and beef farms 
  

Forestry farms 
 

Model Name  (1) (2) (3) (4)   (5) (6) (7) (8)  (9) (10) (11) (12)  

Estimation Model  Base OLS  Base OLS  Full OLS Full FE   Base OLS  Base OLS  Full OLS Full FE   Base OLS  Base OLS  Full OLS Full FE  

Carbon-Water Cycle                      

Dry Matter (log)  796.1***  76.74 560.1***  241.8***  189.5** 194.9*        

   (70.95)  (79.99) (112.2)  (66.45)  (87.08) (106.6)        

NEP (gCm2)                -0.0809  -0.733 -0.709 

                (0.277)  (0.504) (0.531) 

Soil Moisture Deficit 

(mm/month) 

   -6439.7*** -2920.0*** -4868.9***    -6154.8*** -980.1* -841.8    -8097.4*** -7557.3*** -6038.7 

     (478.2) (644.3) (896.8)    (386.0) (570.2) (620.5)    (1411.1) (2771.4) (3702.3) 

Control Variables                      

Total land use (log)     -484.6*** -943.0***     37.47** -322.0***     -67.60 0.972 

      (34.49) (76.70)     (15.53) (35.54)     (50.00) (184.8) 

Dairy cow (log)     192.8*** 43.60               

      (23.65) (29.30)               

Beef cow (log)          -27.09*** -15.43*        

           (6.374) (7.991)        

Sheep (log)           0.763 -5.803        

            (4.964) (8.045)        

Distance to town (log)      1.845 4.020     3.064*** 2.967     9.988* -11.61 

      (1.178) (5.472)     (0.925) (3.233)     (5.438) (14.38) 

Slope class (1-8)     -2.623 -27.30     -19.41* -30.59     -74.79 82.48 

      (9.924) (29.86)     (11.30) (22.25)     (58.83) (123.5) 

Soil class (1-8)     -35.59*** 27.67     12.34 48.13*     44.58 -79.20 

      (10.06) (31.61)     (12.90) (25.27)     (54.28) (117.6) 

% similar neighbour land use      683.6*** 712.9***     164.4 -299.5     -73.24 -1208.7* 

      (125.7) (257.2)     (158.2) (210.6)     (333.2) (733.6) 

Farm age (year)      18.09*** 313.9     21.54*** 156.2***     38.48*** 72.53 

      (1.819) (267.5)     (1.305) (37.39)     (7.803) (405.5) 

Māori indicator*      604.0* 21.09     -272.6** -257.1***     -197.9 4949.6**

* 
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      (323.8) (209.4)     (149.1) (61.65)     (646.7) (988.5) 

Horticulture land (%)     -457.5** -188.5     326.3* -335.5**     1626.5 2022.4** 

      (197.3) (271.6)     (150.3) (158.9)     (1214.4) (846.8) 

Forestry land (%)     -58.71 1210.8*     137.1 300.5        

      (428.9) (651.2)     (279.5) (320.2)        

Grassland (%)                  -230.4 -99.06 

                   (212.6) (419.9) 

Harvested wood (m3) (log)                  170.5*** 158.5*** 

                   (25.97) (32.83) 

Dairy price (log)     1538.7*** -3755.4               

      (59.38) (5033.6)               

Beef price (log)            -9292.0*** -3218.1***        

            (1055.8) (726.5)        

Lamb price (log)            -867.8*** -6204.0***        

            (131.1) (886.8)        

Wood price (log)                  2139.1*** 1306.9 

                   (701.9) (10729.3) 

NZU price (log)                  865.1 1011.5 

                   (555.3) (1699.1) 

Number of observations  69,285 68,730 62,712 62,712  158,615 155,315 136,001  136,002  19,002 19,914 8,196 8,196 

Adjusted R2  0.3% 0.4% 13.8%  20.5%  0.0% 0.0% 1.7% 1.9%  0.0% 0.3% 4.6% 3.4% 

Intraclass correlation 

coefficient 

 NA   NA  NA  0.829  NA  NA  NA  0.771  NA  NA  NA  0.738 

Hausman Test χ2 statistics      892.84***     54.24***     24.95 

Likelihood ratio test χ2 

statistics 

    126.09***     10.64***     7.51** 

                

IDENTIFICATION 

STRATEGY 

                           

Control for regional fixed effect  No No Yes Yes  No No Yes Yes  No No Yes Yes 

Control for year fixed effect  No No Yes Yes  No No Yes Yes  No No Yes Yes 

Control for farm fixed effect  Yes  Yes No Yes  Yes  Yes No Yes  Yes  Yes No Yes 
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explain this result. First, the longer harvest cycles in forestry means that the increase in transient NEP 

or wood growth has little influence on farm profitability from wood production and carbon credits. 

Second, the timing of carbon uptake is decoupled from when income from NZU sales is realized due to 

the set-up of NZ ETS.  Third, the Biome-BGC model has not been specifically calibrated to NZ’s native 

forest, which may hamper the model accuracy. The long-term nature of forestry rotations and strategic 

carbon trading behaviour therefore weakens any direct, short-term link between carbon uptake and net 

income in the models.  Regarding soil moisture deficit, its negative and significant effect on forestry 

farm profit observed in the pooled OLS model disappears in the FE model. This leaves the effect of soil 

moisture deficits on forestry profitability inconclusive. Nevertheless, the joint significance of water–

carbon cycle variables on forestry farm profitability is supported by a Wald chi-square statistic of 10.64 

(p < 0.05). 

Taken together, these findings suggest that the results for forestry farms should be interpreted with 

caution, given data limitations, model uncertainties, and the characteristics of forestry as a long-term 

land use. 

5. Robustness Test  

5.1. Channel analysis  

The base models in Table 2 document the empirical impact of the water–carbon cycle on farm 

profitability. To further investigate the channels through which these biophysical indicators affect 

profit, we examine their associations with other components of the farm financial statements. Table 3 

presents the results of this extended analysis, where we re-estimate the full specification of Eq. (1) but 

use alternative outcome variables including gross output, intermediate expense and current loan, all 

normalised using the farmland area in hectare.  

In panel (a), we find that the positive impact of pastoral dry matter production on dairy farms’ 

taxable profit operates through two main channels: a substantial increase in gross output (total revenue 

minus stock adjustment) and a smaller, yet notable, rise in intermediate expenses (including spending 

on supplemental feed, irrigation, repairs and maintenance, contractor payments, and other operating 

costs). While the positive association between pastoral dry matter and revenue aligns with expectations, 

the increase in intermediate expenses is somewhat surprising, as one might expect reduced spending on 

supplemental feed or fertilizers. However, this can be explained by the fact that more intensive pasture 

production often involves greater expenditures on repairs, machinery use, fencing, and more variable 

costs due to a larger herd size per hectare or higher milking frequency. In contrast, the negative effect 

of soil moisture deficit on profit primarily manifests through a decline in gross output per hectare. 

In panel (b), for sheep and beef farms, the marginal impact of pastoral dry matter production 

on taxable profit appears limited across all dimensions such as output or intermediate expenses or 
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current loans. Similarly, the negative impacts of soil moisture deficit on gross output, intermediate 

expenses, or current loans are statistically insignificant within this subset. This may be again due to the 

lagged nature of water-carbon effects on meat production.  Panel (c) presents results for forestry farms, 

where no significant relationships between the studied variables and profitability are observed.  

Table 3  The impact of water-carbon cycles on farms’ other economic outcomes  

This table presents estimates of the effect of carbon-water on farm-level alterative economic outcomes. Controls include 

geographical/agroclimatic attributes, farm characteristics, land use and farm practice, and time fixed effect, region and farm 

fixed effects. To conserve space, we report the point estimates and the standard errors (in parentheses) of the main variables 

of interest only. Heteroscedasticity robust standard errors clustered at farm-level are reported in parentheses. Number of 

observations and adjusted R2 are reported for all specifications. Especially for FE model, we also report Intraclass correlation 

coefficient which describes how much of the variation in the outcome variable is due to differences across farms, as opposed 

to changes over time within each farm.  * p<0.1, ** p<0.05, *** p<0.01. 

Dependent Variable 

 

Taxable profit 

per hectare 

Output per 

hectare 

Intermediate 

expense per 

hectare 

Current loan 

per hectare 

Estimation Model  Full FE Full FE Full FE Full FE 

Panel (a) Dairy farms           

Dry Matter (log)  560.1*** 721.4** 351.1* 268.3 

   (112.2) (299.1) (181.8) (480.0) 

         

Soil Moisture Deficit (mm/month)  -4868.9*** -4355.7* -984.9 1845.8 

   (896.8) (2287.9) (1409.7) (3731.4) 

          

Number of observations  62,712 63,204 63,294 62,661 

Adjusted R2  20.5% 39.8% 40.6% 11.7% 

Intraclass correlation coefficient  0.829 0.879 0.843 0.699 

Panel (b) Sheep and beef farms           

Dry Matter (log)  194.9* -246.3 -102.01 -537.8 

   (106.5) (270.2) (170.33) (370.0) 

         

Soil Moisture Deficit (mm/month)  -841.8 -540.2 -119.8 -4241.5 

   (620.46) (1519.8) (879.8) (2750.3) 

          

Number of observations  136,001 137,047 137,516  151,182 

Adjusted R2  2.1% 27.8% 36.7% 14.2% 

Intraclass correlation coefficient  0.771 0.984 0.919 0.939 

Panel (c) Forestry farms           

NEP (gC/m²/year)  -0.709 0.455 0.709 0.0368 

   (0.531) (1.157) (0.470) (1.976) 

         

Soil Moisture Deficit (mm/month)  -6038.7 -14115.7 -4857.2 -8988.1 

   (3702.3) (8735.6) (3546.5) (18716.1) 

          

Number of observations  8,196 6,693 8,301 6,891 

Adjusted R2  3.4% 10.3% 16.3% 8.9% 

Intraclass correlation coefficient  0.738 0.843 0.895 0.803 

 

5.2. Control for fertiliser and irrigation  

One could argue that the observed dual impact of water and carbon cycles on farm profits for dairy 

farms, and to a lesser extent, for sheep and beef farms, discussed in Section 4.3 may be confounded by 

intensified farm management practices, particularly the use of fertilisation and irrigation. In Table 4, 
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we gradually account for fertiliser application and irrigation as a control variable as part of our effort to 

address this concern.   

Table 4  Inclusion of fertiliser and irrigation on the impact of water-carbon cycles on pastoral 

farm profitability.  

This table presents estimates of the effect of carbon-water on farm-level profit in a test where we include  irrigation and 

fertiliser activities. Controls include geographical/agroclimatic attributes, farm characteristics, land use and farm practice, and 

time fixed effect, region and farm fixed effects. To conserve space, we report the point estimates and the standard errors (in 

parentheses) of the main variables of interest only. Heteroscedasticity robust standard errors clustered at farm-level are reported 

in parentheses. Number of observations and adjusted R2 are reported for all specifications. Especially for FE model, we also 

report Intraclass correlation coefficient which describes how much of the variation in the outcome variable is due to differences 

across farms, as opposed to changes over time within each farm. * p<0.1, ** p<0.05, *** p<0.01. 

Sample  Dairy farms  Sheep and beef farms 

Column   (1)  (2)  (3)   (4)  (5)  (6)  

Estimation Model  Full FE  Full FE  Full FE   Full FE  Full FE  Full FE  

Identification Strategy  

 

Base model  
With 

fertiliser  

With 

fertiliser + 

irrigation  

 
Base 

model  

With 

fertiliser  

With 

fertiliser + 

irrigation  

Carbon-Water Cycle             

Dry Matter (log)  560.1*** 948.5*** 1108.9***  194.9* 313.8** 276.4 

   (112.2) (160.8) (224.6)  (106.6) (150.2) (209.7) 

NEP (gCm2)            
            
Soil Moisture Deficit (mm)  -4868.9*** -5669.0*** -2454.1  -841.8 -1054.9 -836.6 

   (896.8) (1177.8) (1621.1)  (620.5) (731.2) (1065.7) 

Farm Practice          

Fertiliser - nitrogen (log)    22.43** 2.738    5.536 -1.366 

     (10.83) (14.51)    (10.05) (15.16) 

Fertiliser -phosphorus (log)    -22.65 -18.50    -7.422 12.14  

     (15.78) (21.28)    (8.792) (16.26) 

Fertiliser -potassium (log)    -31.12* -19.57    12.89 11.63  

     (17.16) (23.22)    (11.05) (16.08) 

Fertiliser -sulphur (log)    35.25** 33.94    -0.102 -25.50* 

     (16.89) (26.14)    (8.742) (14.32) 

% of irrigation land      -119.6     251.4 

      (131.8)     (205.3) 

Number of observations  62,712 43,005 25,359  136,001 91,643 51,963 

Adjusted R2  20.5% 22.2% 17.2%   2.0% 2.4% 3.1% 

Intraclass correlation 

coefficient 

 0.829 0.935 0.988  0.793 0.856 0.792 

 

Our findings show that the amounts of fertilisers applied, particularly nitrogen (N) and sulphur (S), are 

strongly and positively associated with dairy farm profitability, but potassium (K) has a marginally 

significant and negative impact (see column 2). Furthermore, the effects of water- and carbon-related 

indicators remain statistically significant even after controlling for fertiliser use. This suggests that the 

observed relationships are not solely driven by input intensification. Notably, the effect of pastoral dry 

matter production on taxable profit remains robust and nearly doubles in magnitude (refer to column 2 

– a repeat of the full FE model in Table 2). This indicates that its economic impact is partially masked 

when fertiliser inputs are omitted. Similarly, soil moisture deficit continues to show a significant 

negative association with profit when fertilisers are included in the model.  
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In column (3), we present an even more restricted model specification when we account for 

irrigation practices by including the proportion of irrigated land at the farm level. In this specification, 

the effect of soil moisture deficit becomes statistically insignificant, while the effect of pastoral dry 

matter remains strong and significant. This shift likely reflects the role of irrigation as a direct response 

to water scarcity, and once irrigation is accounted for, it absorbs much of the explanatory power that 

soil moisture deficit previously held. In contrast, dry matter continues to maintain its strong association 

with profitability. A caveat of this approach is that the irrigation data are only available for 

approximately for some of the years, as some annual surveys do not include this information.  

Similarly, for sheep and beef farms, we find that the effect of dry matter strengthens after controlling 

for fertiliser use (column 5), with sulphur (S) showing a marginally negative association with farm 

profitability. In contrast, the contemporary soil moisture deficit does not seem to affect sheep and beef 

farm profits with or without fertiliser and irrigation controls.  

5.3. Regional and time-specific effect   

In Fig. 4, we test the regional-and year-specific impact of water and carbon cycle to farm profit.  To do 

so, we re-estimate the full specification of Eq. (1) using the interaction terms between the water-carbon 

indicators (e.g., soil moisture deficit, pastoral dry matter, carbon sequestration) with a categorical 

variable (e.g., region dummies or year dummies) (see Eq. (2a) and (2b), respectively). This approach 

allows the estimated effects of these indicators to vary across regions and enables a direct comparison 

of regional differences within a single regression framework. It also ensures greater statistical efficiency 

and consistency than estimating separate models for each region, while allowing formal testing of 

whether regional effects are significantly different. Alternatively, we estimate separate regressions for 

each regional subset to explore local dynamics. While this approach captures regional variability more 

directly, it may suffer from smaller sample sizes, limiting statistical power and complicating cross-

region comparisons. 7  

𝑌𝑖𝑚𝑡 = 𝛼 + ∑𝜷𝟏𝒌𝑪𝒂𝒓𝒃𝒐𝒏𝒎𝒕 ∗ 𝑅𝑒𝑔𝑖𝑜𝑛𝑘  +  ∑𝜷𝟐𝒌𝑾𝒂𝒕𝒆𝒓𝒎𝒕 ∗ 𝑅𝑒𝑔𝑖𝑜𝑛𝑘  

+ 𝜏𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑡  + φ𝑅𝑒𝑔𝑖𝑜𝑛𝑘 + 𝜎𝑌𝑒𝑎𝑟𝑡  +  𝜀𝑖𝑡 

(2a)  

𝑌𝑖𝑚𝑡 = 𝛼 + ∑𝜷𝟏𝒕𝑪𝒂𝒓𝒃𝒐𝒏𝒎𝒕 ∗ 𝑌𝑒𝑎𝑟𝑡  +  ∑𝜷𝟐𝒕𝑾𝒂𝒕𝒆𝒓𝒎𝒕 ∗ 𝑌𝑒𝑎𝑟𝑡  

+ 𝜏𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖𝑡  +  +φ𝑅𝑒𝑔𝑖𝑜𝑛𝑘 + 𝜎𝑌𝑒𝑎𝑟𝑡 +   𝜀𝑖𝑡 

(2b)  

Panel (a) presents the estimated regional- effect of carbon-water indicators across farm types.  With 

the subset of dairy farms, we find that the general positive impact of dry matters on farm profit seems 

to be driven by Taranaki, Waikato, Bay of Plenty, among the largest dairy centres of New Zealand while 

soil moisture deficit has a statistically significant regional-specific effect on Waikato,   

 
7 These findings largely align with those from the national interaction model and are available upon request.  
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Figure 5 The temporal and  spatial variation in water-carbon effects on farm profitability. This figure presents the point estimates (β coefficients) and 95% confidence intervals 

(±2 standard deviations) for the effects of carbon and water on farm-level profit, varying across regions (panel a) and over time (panel b). Within each panel, results are 

grouped into farms with primary land use types (Dairy, Sheep and Beef, Forestry). These represent the interaction terms Carbon × Region and Water × Region from Eq. 2a 

and 2b, respectively. Estimates are derived from FE models that control for geographical and agroclimatic attributes, farm characteristics, land use and management practices, 

as well as time, region, and farm fixed effects. Underlying figures are presented in Appendix Tables S7 and S8.  
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Northland and Otago.  For sheep and beef farms, the positive impact of pasture production seems to be 

mostly significant in Northland region, while the adverse impact of soil moisture deficit is found across 

Bay of Plenty, Otago, Northland, and Waikato regions. For forestry farms, much of the regional-specific 

impacts are insignificant, aligned with the main results. 

Panel (b) presents the estimated year-specific effects of carbon–water indicators. For the subset of 

dairy farms, higher levels of pastoral dry matter are consistently associated with increased farm profits 

across years, with the strongest effects observed in 2004, 2010, and 2015. A visual inspection shows 

that these effects often occur during years when dairy farms record lower profits and economic 

outcomes. Correlation analysis supports this interpretation, suggesting that the carbon-effect is 

amplified under adverse conditions where higher pasture growth may help buffer dairy profits during 

more challenging years. Meanwhile soil moisture deficits have the largest negative impacts on farm 

profits in 2009, 2014, and 2016. Of which, 2009 and 2016 is the years marked by poor conditions, but 

2014 comes with higher profits.  

For the subset of sheep and beef, the effect of pasture dry mater on these farms’ profit can only be 

observed in a few years, including 2013, 2016, and 2019. The yearly-specific effects of soil moisture 

deficits, however, follow essentially the same patterns with those of dairy farms. These findings 

highlight the varying sensitivity of farm profitability to carbon and water availability across time 

particularly under market and weather stress. These visual inspection and correlation analyses are 

presented in Appendix Table S9. Additional analyses where we remove the adverse years in our sample 

size (including the global financial crisis 2008-2009, the North Island drought 2013, the Covid years 

2019-2020) confirms ,   

5.4. Testing for lagged effect, non-linearity, and interaction terms of water-carbon cycles  

To ensure our results are not distorted by model misspecification, we tested for both lagged effects and 

non-linear relationships in the carbon–water variables. Lagged effects were examined by gradually 

introducing from one- to four-year lags of pasture dry matters, NEP, and soil moisture deficit variables 

into the FE models. This allows us to test whether past values of carbon uptake or water stress have 

delayed impacts on farm profitability.  

To explore potential non-linearities we included squared terms of NPP and SMD to capture 

diminishing or amplifying marginal effects. We also tested for interaction terms between carbon and 

water variables to assess whether their combined effect differs from the sum of individual effects. The 

significance and direction of these terms were assessed to determine whether linear assumptions hold 

or if more complex functional forms are appropriate.  
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Table 5  Testing for lagged effect of water-carbon cycle on farm profitability.  

This table presents estimates of the lagged effect of carbon-water on farm-level profit. Controls include geographical/agroclimatic attributes, farm characteristics, land use and farm practice, and time fixed effect, region 

and farm fixed effects. To conserve space, we report the point estimates and the standard errors (in parentheses) of the main variables of interest only. Heteroscedasticity robust standard errors clustered at farm-level are 

reported in parentheses. * p<0.1, ** p<0.05, *** p<0.01.  

Sample 
 

Dairy farms   
 

Sheep and beef farms   
 

Forestry farms   

Column   (1) (2) (3) (3)  (4) (5) (6) (7)  (8) (9) (10)  (11)  

Estimation Model  Full FE  Full FE  Full FE  Full FE   Full FE  Full FE  Full FE  Full FE   Full FE  Full FE  Full FE  Full FE  

Dry Matter (log), t  560.1*** 503.6*** 437.7* 606.8*  194.9* 350.0*** 353.1** 554.8***       
   (112.2) (174.5) (228.8) (320.7)  (106.6) (122.4) (157.8) (204.4)       
Dry Matter (log), t-1    653.3*** 817.1*** 873.1**    196.3** 353.4*** 491.5***       
     (199.5) (243.0) (360.9)    (99.30) (130.8) (169.9)       
Dry Matter (log), t-2     -43.51 157.7     139.0 60.25       
      (169.9) (277.7)     (106.0) (135.8)       
Dry Matter (log), t-3      70.67      -178.1       
       (243.9)      (112.9)       
NEP, t               -0.709 -2.072** -2.339 -0.972 

               (0.531) (0.936) (1.519) (2.093) 

NEP, t-2                -0.239 0.279 1.115 

                 (0.764) (1.227) (1.595) 

NEP, t-2                 1.103 1.111 

                  (1.178) (2.045) 

NEP, t-3                  0.145 

                   (1.696) 

Soil Moisture Deficit, t  -4868.9*** -6583.7*** -7139.6*** -8039.6***  -841.8 -534.6 -598.3 39.03  -6038.7 -12867.9* -14281.9 -4702.0 

   (896.8) (1255.0) (1583.2) (1884.3)  (620.5) (647.2) (731.0) (792.0)  (3702.3) (7053.2) (9420.4) (14057.5) 

Soil Moisture Deficit, t-1    1555.9 3304.3** 4766.2**    36.88 -61.40 926.5    -3835.2 -5635.3 4416.6 

     (1194.1) (1510.4) (1911.2)    (631.2) (725.7) (830.4)    (6143.7) (9221.1) (16661.8) 

Soil Moisture Deficit, t-2     -815.1 -1869.3     -1881.0*** -1659.4**     -6154.0 -9617.0 

      (1437.3) (1848.2)     (710.4) (791.0)     (7556.1) (10098.6) 

Soil Moisture Deficit, t-3      -2409.3      276.9      16306.4 

       (1593.4)      (671.6)      (14748.4) 

Number of observations  62,712 35,235 23,406 16,422  136,002 80,064 54,078 39,069  8,196 4,455 2,406 1,362 

Adjusted R2  20.5% 24.4% 26.1% 26.4%  1.9% 2.4% 2.5% 2.9%  3.4% 4.0% 3.7% 2.0% 

Intraclass correlation coefficient  0.829 0.653 0.704 0.768  0.771 0.841 0.855 0.878  0.738 0.789 0.709 0.571 

Degree of freedom  46 44 43 38  47 46 46 47  22 20 22 25 

AIC  1,083,916 603,111 398,632 278,001  2,420,339 1,386,485 924,651 658,445  148,369 80,290 43,453 24,787 

BIC  1,084,332 603,484 398,978 278,294  2,420,801 1,386,913 925,060 658,848  148,523 80,418 43,581 24,917 
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Table 5 presents the first set of results examining the lagged effects. The findings confirm that both 

the water and carbon cycles exhibit significant lagged impacts on dairy farms and sheep and beef farms. 

In relation to the carbon cycle, the effect of pasture dry matter persists for up to two years, as indicated 

by the statistically significant coefficients at both lagged (t–1) and current (t) time periods across both 

land-use categories. This is particularly evident for sheep and beef farms, where the inclusion of lagged 

values for pasture dry matter reveals a much larger and more significant impact on farms profit.  

In contrast, the lagged effects of soil moisture deficit differ between farm types. For dairy farms, a 

significant positive lagged effect from the previous year (t–1) is observed, suggesting that drought 

conditions in the prior year are associated with higher income in the current year. This result may reflect 

the dominant market role of dairy farms in New Zealand, which allows them to influence milk prices, 

especially during periods of supply shock. For sheep and beef farms, however, the lagged effect of soil 

moisture deficit emerges only at a two-year lag (t–2), with no discernible effects at t or t–1. These 

findings are further supported by lower values of the Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) in the lagged models, indicating improved model fit. 

 Table 6 presents the second set of results. For dairy farms, we find significant non-linear effects 

of both carbon and water cycle indicators on profits supported by F-values of joint-significant tests 

(16.25 and 12.86), respectively (column 2). The relationship between pasture dry matter and profit is 

U-shaped indicated by the estimated coefficients of  -3,275 (linear term) and 212 (squared term), with 

a turning point at log(dry matter) ≈ 7.7 (≈ 2,248 kg DM/ha/year). Below this threshold, more pasture 

dry matter reduces profit, beyond it profit increases likely due to improved productivity. As real-world 

values of dairy pasture DM is in the range of from 7,279 to 15,436 kg (see table 1, 1st to 99th percentile), 

the combined effect is most likely positive. In contrast, the effect of soil moisture deficit follows an 

inverted U-shape, with a turning point at SMD ≈ –0.06 mm/month. Again, this turning point lies outside 

the observed range (see Table 1), profits generally decline as soil moisture deficit increases. No 

significant interaction effects between water and carbon cycle indicators are found (column 3), 

suggesting that their impacts on profit operate independently rather than synergistically.   

For the subset of sheep and beef farms, there is a significant non-linear effect of pasture dry matter 

on profits, but no such relationship is observed for soil moisture deficit, as indicated by F-values of 2.65 

and 1.66, respectively. The estimated coefficients for pasture dry matter on sheep and beef farms are -

833.4 (linear term) and 60.17 (squared term), continues to indicate a U-shaped relationship with the 

turning point at approximately 1,020 kg DM/ha/year (log ≈ 6.92). We also find so significant interaction 

effects between water and carbon cycle indicators for this subset of sheep and beef farms (column 6). 
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Table 6  Testing for non-linearity and interaction effect of water-carbon cycle on farm profitability.  

This table presents estimates of the non-linearity and interaction effect of carbon-water on farm-level profit. Controls include geographical/agroclimatic attributes, farm characteristics, land 

use and farm practice, and time fixed effect, region and farm fixed effects. To conserve space, we report the point estimates and the standard errors (in parentheses) of the main variables of 

interest only. Heteroscedasticity robust standard errors clustered at farm-level are reported in parentheses. * p<0.1, ** p<0.05, *** p<0.01.  

Sample  Dairy farms  Sheep and beef farms    Forestry farms 

Column   (1) (2) (3)  (4) (5) (6)  (7) (8) (9) 

Estimation Model  Full FE  Full FE  Full FE   Full FE  Full FE  Full FE   Full FE  Full FE  Full FE  

Carbon-Water Cycle               

Dry Matter (log)  560.1*** -3275.3*** 505.3***  194.9* -833.4 327.0**     

  (112.2) (785.1) (152.4)  (106.6) (539.6) (161.7)     
[Dry Matter (log)] 2   212.5***    60.17*      

   (47.77)    (32.83)      
Exotic NEP (gCm2)           -0.709 -0.544 -1.053 

          (0.531) (0.698) (0.903) 
[Exotic NEP (gCm2)] 2           -0.00120  

           (0.00323)  
Soil Moisture Deficit (mm)  -4868.9*** -2832.0* -22248.2  -841.8 -2359.3* 29083.9  -6038.7 -8565.4 -6750.8* 

  (896.8) (1500.1) (30961.4)  (620.5) (1306.1) (25312.2)  (3702.3) (7639.2) (4061.6) 

[Soil Moisture Deficit (mm)]2   -23749.1    17960.3    29389.7  

   (17236.7)    (12273.9)    (72892.8)  
Dry Matter x Soil Moisture Deficit     1846.3    -3253.9     

    (3285.4)    (2753.4)     
NEP x Soil Moisture Deficit             10.05 

            (18.52) 

Number of observations  62,712 62,712 62,712  136,002 135,999 135,999  23,406 8,199 8,196 

Adjusted R2  20.5% 20.5% 20.5%  1.9% 1.9% 1.9%  26.1% 3.4% 3.4% 

Intraclass correlation coefficient  0.829 0.825 0.828  0.771 0.773 0.773  0.704 0.739 0.739 

F test of dry matter non-linearity   16.25***    2.65*    1.02  
F test of soil moisture deficit non-linearity     12.86***       1.66        1.35    
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5.5.  Other robustness tests  

In the main analysis, we focus on the effects of soil moisture deficit (SMD)—which primarily reflects 

water shortages in the top 0–90 cm of soil—on farm profitability. However, an important question not 

addressed in the core analysis remains: To what extent does groundwater availability, which is not 

currently captured by the Biome-BGC model, influence farm economic outcomes?  To explore this, we 

incorporate two indicators from the 2000–2014 national groundwater dataset: (i) groundwater rainfall 

recharge rate and (ii) groundwater table depth. The first is a time-varying indicator that captures the 

spatial and temporal distribution of rainfall that goes beyond the soil and infiltrated deeper into the 

ground to recharge aquifers. The second represents the long-term average depth to the water table below 

ground level, serving as a proxy for groundwater accessibility in deeper aquifers (see Fig. 4). 

 

(a) Mean monthly rainfall recharge in 2000-2014  

 

(b) Groundwater table depth in m below ground level (mbgl) 

 

Figure 6 The spatial variation in groundwater table across New Zealand. Rainfall recharge to groundwater was taken from 

a national New Zealand rainfall recharge dataset that contains monthly estimates of recharge from January 2000 to December 

2014, including an uncertainty estimate. These recharge values are fed into national maps of National Water Table model of 

groundwater table depth below ground level. The water table depth is relatively deep in higher mountainous regions, but water 

table elevation clearly follows the terrain elevation (Westerhoff et al., 2018). 

 

We then re-estimate the full specification of Eq. (1), incorporating the additional groundwater-

related variables. The sample size is reduced by half, as the analysis is now restricted to the 2003–2013 

period. We continue to use a fixed effects (FE) estimator; however, this approach has limitations, 

particularly in capturing variation in groundwater table depth, which is largely time-invariant and only 

changes when farms shift location. The result of this analysis is shown in Appendix S11.  
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Interestingly, the results reveal a statistically significant negative marginal effect on dairy farms 

but not for sheep and beef farms or forestry farms. One plausible explanation is that high recharge areas 

often coincide with low-lying floodplains, where excess water may delay pasture access or increase 

farm management costs. An alternative, and perhaps more probable, explanation, is that the recharge 

variable represents total rainfall recharge, that is, the volume of water infiltrating past the root zone, 

rather than net recharge that actually contributes to groundwater storage. Additionally, the national 

groundwater model operates at a coarse spatial resolution and lower quality, which may not accurately 

reflect local geological conditions. This mismatch may distort the relationship and lead to the 

unexpected negative association between recharge and dairy profitability. As for groundwater table 

depth, we hypothesized that shallower depths would reduce irrigation costs and thereby increase profits, 

particularly in regions such as Canterbury, Waikato, or Southland with extensive alluvial aquifers. 

However, we find inconsistent effects for this variable as well. 

In our main analysis, we use a sample spanning the past 20 years (2003–2023), which involves 

merging two Agricultural Production Survey (APS) datasets covering 2002–2012 and 2013–2023 into 

a single longitudinal database. To ensure that our results are not driven by structural changes in the 

agricultural sector or shifts in data collection methods over this period, we also re-run the analysis 

separately for the two sub-periods. The results, presented in Appendix S13, show a notably stronger 

effect of both water-carbon cycles in the post-2013 period. 

6. Conclusion  

Economic modelling using the subset of carbon, water and farm data on a national dataset showed a 

significant positive association between dairy farm profits and dry matter production and a negative 

association with soil moisture deficit. The analysis of groundwater is limited by the lower-quality data 

but suggest that an increase in total groundwater recharge is associated with decreased profit.  

Similarly, for sheep and beef farms, we find that an increase in dry matter is associated with an 

increase in profit. While the absolute gain in profit is smaller than dairy farms, the relative impact is 

more substantial given that sheep and beef farms are generally less profitable and have a lower profit 

margin. Sheep and beef farms are likely more affected by interannual variability in climate and pasture 

production because of the less intensive nature of the farm systems. However, unlike dairy farms, the 

effect of contemporary soil moisture deficit is not observable for sheep and beef farms. This is because 

a lag in the impact of drier conditions of at least three years.  

Forestry did not show any significant effects of carbon and water indicators on taxable profit. 

While initially counterintuitive, it is likely due to the long harvest cycle in wood production as well as 

how the NZ ETS is designed. NZUs are allocated based on standardized, modelled carbon exchange in 

advance of actual harvest or physical carbon uptake, with no variation due to climate and soil conditions. 
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The actual timing of carbon uptake (reflected in NEP) thus does not always coincide with when income 

from NZU sales is realized. As a result, annual NEP may not strongly correlate with yearly profitability, 

especially in financial records where revenue from NZUs is recognized only upon sale. The long-term 

nature of forestry rotations and strategic carbon trading behaviour therefore weakens any direct, short-

term link between carbon uptake, water availability and net income in the economic models. 

Although we did not find a significant association between indicators of farm profitability and 

groundwater volume or table depth, it does not mean that water availability is not an important factor 

for land use decisions and economic viability. There might be a significant lag between changes in the 

groundwater level and storage and farm profit, and we were not able to resolve this with our current 

models. There is a lack of high-quality, temporally-resolved groundwater information on a national 

level. With temporally-explicit observed or modelled groundwater storage and the incorporation of time 

lags, there could still be a significant effect.   

Additionally, if the system is not water-limited (i.e., historical levels of precipitation, ET and 

groundwater recharge/storage are enough to meet all current needs), and there has not been a historical 

shortage of water supply, we would not be able to resolve any differentiation among farms as water 

variables fluctuate from year to year. We only tested annual variables; seasonal effects (especially the 

timing of precipitation during the growing season) could also be significant. It is possible that in the 

future, if seasonal patterns of precipitation change or a threshold has been crossed and the system 

becomes occasionally or frequently water-limited during drought periods, a significant relationship will 

emerge, and some land uses will incur more costs than others due to irrigation and/or water supply 

limitations. We leave this avenue for future research.  
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Appendix  

 

Appendix S1. The roles of agriculture and forestry in New Zealand carbon emission profile  

 

 
 

(a) Carbon stocks of New Zealand’s natural ecosystems are massive; the above-ground vegetation alone 

stores around 1,450 million tonnes of carbon (5,343 Mt CO2e), mostly in native forests. Our annual 

national carbon emission is 79 Mt CO2e, of which, agriculture emission contributes to 41.7 Mt CO2-e 

and LULUCF contributes (offset) the emission profile by 25%.  

 

 
(b) New Zealand Emission Unit (NZU) spot prices remained around NZ$25 per tonne until May 2019, 

when the government announced a second phase of improvements to the New Zealand Emissions 

Trading Scheme (NZ ETS) aimed at strengthening incentives for emissions reductions and 

afforestation. One key change was the planned removal of the NZ$25 fixed price option (FPO) ceiling, 

to take effect with the introduction of auctioning or by 31 December 2022. Source: self constructed 

from: https://github.com/theecanmole/nzu 
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Appendix S2.  Breakdown of farms associated with multiple meshblocks over the research 

period 2003-2022. 

In New Zealand context, June 1 marks Moving Day and the start of the dairy season. It is estimated that 

up to 5,000 dairy farming families and herds relocate to new farms to take on new share-milk contracts. 

This widespread movement, particularly common in regions like Waikato, Taranaki, Canterbury, and 

Bay of Plenty, adds further complexity in interpreting farm location changes in the data. Question 8 in 

APS covers whether the farming business still operates at the existing location or has moved to the new 

location. Accordingly, in the study period 2003-2022, several farms have mesh block locations that 

change over time, affecting at least 50% of the sample size. Following Timar and Apatov (2020), we 

retain these farms, as it is unclear whether such changes reflect genuine relocations, administrative 

updates, or data errors.  
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Appendix S3.  Agriculture related land use across New Zealand.  

 

   

Land use as of 2020:  The LUCAS (Land Use and Carbon Analysis System) Land Use Map (LUM) is a collection 

of land use maps that provide essential information on how New Zealand’s land use is changing over time.  These 

maps are used for estimating greenhouse gas emissions and removals associated with various land-use activities 

in our national greenhouse gas inventory.  Twelve land use classes are mapped in the LUCAS LUM including 

three forest classes, which contain most of our carbon stores, and nine non-forest classes. In New Zealand, the 

Grassland category is used to describe a range of land cover types, grouped into three main classes: high 

producing, low producing and with woody biomass and is further divided into dairy and non-dairy grazing.  
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Appendix S4.  Number of farms by land-use type over time by region. 

 

Similar to the national dataset, we observe consistent peaks in the census years 2017 and 2022 and dips in between, 

especially in the Covid period 2019-2020, and a slight decline in the full sample between the two census years 

that could reflect either lower survey response rates or an organic decline in farm numbers across all regions.  
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Appendix S5.  Data source and variable description. 

Panel (a) Data source description. Source: Fabling and Sanderson (2016)  

Abr. Name  Description  

URC  Stats NZ Urban Rural 

Classification (URC) 2022  

 

This dataset is the definitive set of annually released urban rural 

boundaries for 2022 as defined by Stats NZ. This version contains 722 

urban rural features. Urban rural is an output geography that classifies 

New Zealand into areas that share common urban or rural characteristics 

and is used to disseminate a broad range of Stats NZ’s social, 

demographic, and economic statistics. 

LUCAS  New Zealand’s LUCAS Land 

use map 2020   

The LUCAS NZ Land Use Map 2020 v005 classifies land use across 

New Zealand into 12 categories at five time points: 31 December 1989, 

2007, 2012, 2016, and 2020. These reference dates align with reporting 

requirements under the Paris Agreement and the former Kyoto Protocol. 

Land use areas and changes identified in the map are used to estimate 

greenhouse gas emissions and removals from the Land Use, Land Use 

Change and Forestry (LULUCF) sector. This information feeds into New 

Zealand’s Greenhouse Gas Inventory and Biennial Transparency Report, 

submitted to meet obligations under the UNFCCC and the Paris 

Agreement.  

LENZ  NZLRI LENZ - Soil particle 

size  

The raster data defines the average particle size based on the soil 

information (from the NZLRI) and the mapped parent material. This 

particle size data layer is differentiated into five classes, silt and clay 

(Class 1), Sand (2), Gravel (3), Coarse to very coarse gravel (4), 

Boulders to massive (5). The class defined as "0" signifies areas where 

there is no soil attributes recorded (i.e. high peaks of the Southern Alps). 

LUC  NZLRI Land Use Capability 

2021 

 

 

The New Zealand Land Resource Inventory (NZLRI) is a national 

database of physical land resources, based on aerial photography, 

fieldwork, and reference materials. It records five key factors—rock 

type, soil, slope, erosion, and vegetation—using a homogeneous unit 

area approach at a 1:50,000 scale. Each area is assigned a Land Use 

Capability (LUC) rating, reflecting its potential for sustainable 

agricultural use based on physical characteristics, climate, land use 

history, and erosion risk. The NZLRI covers the country in 11 regions, 

each with its own LUC classification.  

APS  Agriculture production survey  The Agricultural Production Survey (APS), run by Statistics NZ, collects 

data on agricultural, horticultural, and forestry activity to support GDP 

estimates for these sectors, which are excluded from the AES. The 

survey targets “farms”—land blocks managed as single agricultural 

operations. Earlier surveys were conducted at the sub-KAU level 

(contiguous land blocks by industry) but have since transitioned to the 

GEO level. When a farm is operated by someone other than the owner 

(e.g., a sharemilker), the owner typically completes the survey with input 

from the operator. 

IR10  Tax-filed accounts information  The IR10 is a simplified financial statement submitted to Inland Revenue 

(IR) in place of full accounts, covering profit/loss and balance sheet 

information. It supports IR’s policy, research, and compliance functions. 

In the 2012/13 tax year, the IR10 was revised and renamed the IR10 

Financial Statements Summary, with changes reflected in the LBD from 

the 201303 data year onward. 

LBF  Longitudinal Business Frame  The Longitudinal Business Frame (LBF) is a panel dataset derived from 

Statistics NZ’s former Business Frame (BF), used until April 2014 as the 

main sampling frame and for compiling business demography statistics. 

The LBF reconstructs historical BF data to track firm and plant 

characteristics over time. It underpins the Longitudinal Business 

Database (LBD), enabling linkage to other firm-level datasets. In May 

2014, the BF was replaced by the Business Register (BR). 

  



50 
 

Panel (b): Variable description  

Variable Source  Description  

Operational scale 
 

  

Total land use (ha) APS  The total land area of the farm on 30 June every year. This doesn’t count 

land leased to others or used by other, or land share milk on, but include land 

lease from other.  

Beef (lsu) APS Total beef calves and beef cattle on the farm whether they were own by the 

farming business or not.  

Dairy (lsu) APS Total dairy cattle on the farm whether they were owned by the farming 

business or not, including dairy cows and heifers in milk or in calf, not in 

milk, not in calf, dairy bulls, and dairy heifers and heifer calves, and all other  

Sheep (lsu) APS Total sheep on the farm whether they were own by the farming business or 

not, including ewes, ewe lambs, hogget, rams, wethers and other  

Harvested wood (m3) APS Total harvested wood in m3  

Economics outcome per ha   

Taxable profit per hectare 

(NZ$/ha)  

IR10 Net taxable profit/loss before tax divided by the total land use area  

Gross output per hectare 

(NZ$/ha)  

IR10 Total income from production minus stock adjustment divided by the total 

land use area (to avoid destocking phase or restocking phase)  

Intermediate expense per 

hectare (NZ$/ha)  

IR10 It is calculated as the sum of purchases and total expenses minus wages, bad 

debt, interest expenses and depreciation. Intermediate expenditure includes 

ongoing costs such as those of animal feed and fertilizers. 

Current loan per hectare 

(NZ$/ha) 

IR10 Current loans reflect farms’ short-term debt, including cheque and income 

tax account liabilities and overdrafts, but excluding non-bank debt and long-

term liabilities such as mortgages. 

Farm characteristics   

Farm age (year)  LBF  Derived from the current reporting year minus the emprise year in LBF 

dataset.  

Māori business indicator 

(yes/no)  

LBF  An optional indicator that helps business to self-identify as Māori business 

on the NZBN register or if it is fully or partially owned by a person or people 

who have Māori whakapapa. This data has a lot of NA values which is 

imputed with “non-Māori” if not filled in.   
Farm Spatial 

Characteristics 

  

Distance to town (km)  Stats NZ 

IUR 2022  

Distance from the centroid of the farm-meshblock to the nearest polygon of 

large and small urban areas.   

Mean soil class (1-8) LRIS 

LUC 2021  

The mean land use class of the farm meshblock. LUC= 1: Land with virtually 

no limitations for arable use and suitable for cultivated crops, pasture or 

forestry, LUC=8: Land with very severe to extreme limitations or hazards 

that make it unsuitable for cropping, pasture or forestry 

Mean slope (1-8) LRIS 

LUC 2021 

The mean slope class delineating from physiographic areas of relatively 

homogeneous average slope class. Slope= 1: Flat to gently undulating (0-3o), 

and 8: Precipitous (>42o) 

 

% neighbour land for dairy LUCAS The fraction of land use in the meshblock dedicated to dairy activities, 

including “Grassland – high producing” - “Grazed, dairy”. Data is available 

for year 2012,2016, 2020 and is interpolated in between.  

% neighbour land for 

sheep/beef 

LUCAS The fraction of land use in the meshblock dedicated to sheep and beef 

activities, including “Grassland – high producing” and “Grassland – low 

producing”, “Grazed, non-dairy”. Data is available for year 2012,2016, 2020 

and is interpolated in between. 
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% neighbour land for forestry 

(native + planted)  

LUCAS The fraction of land use in the meshblock dedicated to forestry activities, 

including both native, pre 1989 and post 1989 planted forests. Data is 

available for year 2012,2016, 2020 and is interpolated in between. 

Land use on farm    

Grassland/ tussock land (%) APS Derived from the total land area of the farm made out of grassland, tussock 

and danthonia used for grazing (whether oversown or not) divided by total 

land use  

Forestry land (%) APS Derived from the land area of the farm made out of plantations of exotic trees 

for harvest, harvested exotic forest area awaiting restocking divided by total 

land use 

Horticulture land (%) APS Derived from the land area of the farm made out of grain, seed, fodder crop 

and winter feed land, and land prepared for these crops or commercial 

horticultural land and land prepared for commercial horticulture divided by 

total land use 

Bush/ scrub land (%) APS Derived from the land area of the farm made out of mature native bush, 

native scrub and regenerating native bush, divided by total land use 

Farm Management Practice   

Fraction of irrigation total 

(%) 

APS Derived from the total area of the farm was actually irrigated during the year, 

using micro-systems, flood systems, centre pivots and linear moves and all 

other outdoor, for dairy/grazing/other live stocks and crops.  

Fertiliser use (kg) nitrogen APS Tonnes of the elements nitrogen (N) were applied to the farm 

Fertiliser use (kg) phosphorus APS Tonnes of the elements phosphorus (P) were applied to the farm 

Fertiliser use (kg) sulphur APS Tonnes of the elements sulphur (S) were applied to the farm 

Water Cycle   

Soil moisture deficit (cm/ 

month) 

Biome 

BGC  

Soil PED is measured in the topsoil to a depth of 90 cm and expressed in 

mm/month. It indicates the amount of rainfall required to return the soil to 

field capacity. PED is determined by daily weather conditions (temperature 

and precipitation), land cover, and soil texture. A PED value of 0 cm/year 

reflects saturated (moist) soil, while values approaching field capacity 

indicate drier conditions.  

Total groundwater recharge 

(mm/year) 

NWTM Annual summation of monthly rainfall recharge to groundwater using a 

simplified one-layer soil water balance model. It calculates recharge as the 

surplus of rainfall after accounting for evapotranspiration, soil storage, and 

correction factors for slope, soil permeability, and geology. Although 

uncalibrated, the model is informed by case study comparisons and draws 

inspiration from the WaterGAP model.  

Groundwater table depth 

(mbg) 

NWTM Depth to groundwater derived from national maps from the NWT model 

show that water tables are deeper in mountainous areas, while water table 

elevation closely follows land elevation. The model highlights major alluvial 

aquifers, such as in the Canterbury and Heretaunga Plains, aligning well with 

previous aquifer maps (e.g., White 2001). Compared to the older EWT 

model, the NWT provides finer spatial detail, capturing small shallow water 

table features that often align with stream valleys. This improved resolution 

offers a more realistic representation of local groundwater conditions, which 

is further examined in two regional case studies: the Canterbury region and 

the Waipa River catchment. 

Carbon Cycle    

Dry matter (kg DM/ha/year) Biome 

BGC 

A proxy for pastoral farms as it reflects the spatial variations in pasture 

growth or grass available as food for grazing animals. DM yield is converted 

from net primary production or the amount of carbon retained in an 

ecosystem via the ratio of above-ground to below-ground allocation by the 

inverse of the new fine root. 

Net NEP (gC/m²/year) Biome 

BGC 

Net ecosystem production (NEP) from evergreen broadleaf forest, in grams 

of carbon per square meter per year (gC/m²/year), as a proxy for potential 

carbon sink from vegetation and soils from exotic forests. 
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Appendix S6.  Correlation analysis 

 

(a) Dairy farms  

Variables N (1) (2) (3) (4) (5) (6) (7) (8) (9) 

(1) Dairy DM 101,199 1         

(2) Dairy NEP 101,703 0.506* 1        

(3) Soil moisture PED 100,203 -0.294* -0.202* 1       

(4) Total groundwater recharge 56,793 0.232* 0.042* -0.587* 1      

(5) Groundwater table depth 103,554 -0.041* 0.007* 0.028* 0.069* 1     

(7) Gross output per hectare 78,168 0.016* 0.039* -0.020* -0.046* -0.079* 1    

(8) Intermediate expense per hectare 78,351 0.005 0.031* -0.006 -0.053* -0.076* 0.890* 1   

(9) Profit per hectare 77,592 0.046* 0.063* -0.055* -0.021* -0.058* 0.489* 0.249* 1  

(10) Loan per hectare 77,436 0.007 0.033* 0.007 -0.034* -0.040* 0.394* 0.405* 0.114* 1 

 

(b) Sheep and beef farms  

Variables N (1) (2) (3) (4) (5) (6) (7) (8) (9) 

(1) Sheep and Beef DM 228,468 1         

(2) Sheep and Beef NEP 229,161 0.319* 1        

(3) Soil moisture PED 223,548 -0.222* 0 1       

(4) Total groundwater recharge 120,669 0.204* -0.021* -0.529* 1      

(5) Groundwater table depth 232,383 -0.088* 0.014* 0.086* -0.079* 1     

(7) Gross output per hectare 173,421 0.012* 0.003 -0.039* -0.002 -0.122* 1    

(8) Intermediate expense per hectare 174,177 0.011* 0.006* -0.037* -0.002 -0.147* 0.841* 1   

(9) Profit per hectare 172,131 0.010* 0.005 -0.030* -0.011* -0.009* 0.525* 0.152* 1  

(10) Loan per hectare 164,505 0.015* 0.003 -0.025* 0.002 -0.101* 0.402* 0.440* 0.052* 1 
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(c) Forestry farms  

Variables N (1) (2) (3) (4) (5) (6) (7) (8) (9) 

(1) Native forest NEP      28,083  1         

(2) Exotic forest NEP      28,080  0.721* 1        

(3) Soil moisture PED      29,397  -0.188* -0.083* 1       

(4) Total groundwater recharge      14,202  0.276* 0.196* -0.502* 1      

(5) Groundwater table depth      32,007  0.153* 0.067* -0.105* -0.062* 1     

(7) Gross output per hectare      18,615  0.025* 0.01 -0.017* -0.015 -0.100* 1    

(8) Intermediate expense per hectare      21,903  0.014 0.019* 0.012 -0.024* -0.111* 0.771* 1   

(9) Profit per hectare      21,696  0.029* -0.004 -0.051* 0.008 -0.012 0.600* 0.124* 1  

(10) Loan per hectare      18,927  -0.01 -0.01 0.029* -0.009 -0.066* 0.396* 0.397* 0.079* 1 
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Appendix S7.  Regional variation in impact of water-carbon cycles on farm profitability.  

This table presents estimates of the effect of carbon-water on farm-level profit in regional subset. Controls include 

geographical/agroclimatic attributes, farm characteristics, land use and farm practice, and time fixed effect, region 

and farm fixed effects. To conserve space, we report the point estimates and the standard errors (in parentheses) 

of the main variables of interest only. Heteroscedasticity robust standard errors are reported in parentheses. * 

p<0.1, ** p<0.05, *** p<0.01. 

(a) Dairy farms   

Independent Variables   Dry Matter (log)  Soil Moisture Deficit (mm) 

Region  Beta Std. errors    Beta Std. errors   

Auckland Region  733.9 (507.9)  -3852.2 (3940.7) 

Canterbury Region  197.8 (567.0)  -652.3 (3673.2) 

Bay of Plenty Region  2094.2*** (415.4)  -4400.8* (2636.0) 

Gisborne Region  -846.0 (1186.2)  -17620.3 (19076.4) 

Hawke's Bay Region  -411.7 (798.7)  -2516.3 (6727.9) 

Manawatu-Whanganui Region  536.8* (322.5)  794.1 (2687.9) 

Marlborough Region  -249.1 (247.8)  10334.9 (7360.6) 

Nelson Region  178.0 (125.5)  2705.5** (1068.3) 

Northland Region  112.6 (137.5)  -4691.7*** (1230.3) 

Otago Region  -734.7 (556.5)  -14729.5*** (4452.8) 

Southland Region  979.9** (497.2)  1283.7 (3234.5) 

Taranaki Region  1615.7*** (379.2)  811.3 (2915.7) 

Tasman Region  133.2 (440.9)  3395.9 (5834.8) 

Waikato Region  806.5*** (195.1)  -6236.0*** (1550.6) 

Wellington Region  856.2 (599.9)  6190.5 (4168.6) 

West Coast Region   -1618.0*** (542.4)   -10428.7 (6463.9) 

National Sample   560.1*** (112.2)   -4868.9*** (896.8) 

(b) Sheep and beef farms  

Independent Variables  Dry Matter (log)  Soil Moisture Deficit (mm) 

Region  Beta Std. errors    Beta Std. errors   

Auckland Region  285.1 (724.8)  3690.5 (4092.0) 

Canterbury Region  241.0 (1197.0)  -652.3 (4725.3) 

Bay of Plenty Region  255.8 (253.4)  -4400.8* (1157.8) 

Gisborne Region  144.2 (366.6)  -17620.3 (1915.5) 

Hawke's Bay Region  284.8 (297.4)  -2516.3 (1893.7) 

Manawatu-Whanganui Region  237.9 (270.3)  794.1 (1472.0) 

Marlborough Region  -198.2 (464.4)  10334.9 (3561.8) 

Nelson Region  2000.7 (2377.6)  2705.5** (21588.1) 

Northland Region  426.2* (235.9)  -4691.7*** (1443.0) 

Otago Region  350.7 (283.2)  -14729.5*** (1128.3) 

Southland Region  89.56 (231.7)  1283.7 (2311.2) 

Taranaki Region  485.2 (838.7)  811.3 (3482.1) 

Tasman Region  -311.8 (572.8)  3395.9 (3025.7) 

Waikato Region  62.79 (218.8)  -6236.0*** (1993.2) 

Wellington Region  60.72 (359.4)  6190.5 (2980.3) 

West Coast Region   5635.7 (3754.0)   -10428.7 (13063.4) 

National Sample   194.9* (106.5)   -841.8 (620.4) 
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(c) Forestry farms  

Independent Variables  Dry Matter (log)  Soil Moisture Deficit (mm) 

Region  Beta Std. errors    Beta Std. errors   

Auckland Region  1.114 1.114  4682.1 (10215.8) 

Canterbury Region  -4.956 -4.956  -21546.1 (18501.1) 

Bay of Plenty Region  0.845 0.845  305.2 (6974.3) 

Gisborne Region  -1.607 -1.607  10015.2 (11665.4) 

Hawke's Bay Region  0.661 0.661  -19991.3 (17582.1) 

Manawatu-Whanganui Region  -3.209** -3.209**  5941.3 (10567.3) 

Marlborough Region  -3.633 -3.633  -9908.9 (12207.0) 

Nelson Region  -1.998 -1.998  25886.7* (13616.1) 

Northland Region  -1.475 -1.475  -11240.3 (8969.2) 

Otago Region  1.313 1.313  -23140.1 (15751.6) 

Southland Region  3.002 3.002  -23678.0 (19992.3) 

Taranaki Region  -1.121 -1.121  -15760.8 (19279.3) 

Tasman Region  -0.942 -0.942  5349.6 (6520.2) 

Waikato Region  -1.167 -1.167  -2246.4 (11400.4) 

Wellington Region  1.099 1.099  -9167.7 (11228.3) 

West Coast Region   2.966** 2.966**   34901.0 (25256.9) 

National Sample   -0.709 (0.504)   -8988.1 (3702.3) 
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Appendix S8.  Yearly variation in impact of water-carbon cycles on farm profitability.  

This table presents estimates of the effect of carbon-water on farm-level profit in regional subset. Controls include 

geographical/agroclimatic attributes, farm characteristics, land use and farm practice, and time fixed effect, region 

and farm fixed effects. To conserve space, we report the point estimates and the standard errors (in parentheses) 

of the main variables of interest only. Heteroscedasticity robust standard errors are reported in parentheses. * 

p<0.1, ** p<0.05, *** p<0.01. 

(a) Dairy farms   

Independent Variables  Dry Matter (log)  Soil Moisture Deficit (mm) 

Region  Beta Std. errors    Beta Std. 

errors   2003  903.9*** (346.2)  -3414.2* (2005.3) 

2004  1075.9*** (263.6)  -2377.6 (1669.2) 

2005  695.7** (299.8)  -4656.5** (2164.7) 

2006  510.7 (312.7)  -3283.9* (1941.3) 

2007  656.3*** (251.0)  -3260.0** (1472.8) 

2008  458.6* (248.6)  -6942.2*** (1871.8) 

2009  -342.6 (341.7)  -10825.6*** (3297.4) 

2010  1007.1*** (312.0)  -3748.0* (1918.8) 

2011  -630.1* (348.1)  -3683.3* (2177.7) 

2012  349.5 (283.9)  -3658.9** (1533.6) 

2013  542.3** (214.3)  -2603.2 (1756.9) 

2014  563.3** (277.4)  -10783.4*** (1639.0) 

2015  1164.8*** (240.5)  -3412.6** (1418.0) 

2016  696.8** (292.2)  -7893.2*** (1733.0) 

2017  711.5*** (198.9)  -90.00 (1560.1) 

2018  708.7*** (213.6)  290.5 (1551.3) 

2019  625.1** (256.3)  -3785.3** (1727.0) 

2020  295.4 (232.1)  -6035.4*** (1616.5) 

2021  291.6 (286.5)  -4361.8*** (1690.9) 

2022  108.2 (417.8)  -5876.6*** (1662.6) 

National Sample   560.1*** (112.2)   -4868.9*** (896.8) 

(b) Sheep and beef farms  

Independent Variables  Dry Matter (log)  Soil Moisture Deficit (mm) 

Region  Beta Std. errors    Beta Std. errors   

2003  378.6 (334.2)  3446.2* (1767.9) 

2004  124.8 (281.5)  -2377.6 (1437.5) 

2005  -508.7 (675.6)  -4656.5** (2085.9) 

2006  -257.1 (309.1)  -3283.9* (1645.7) 

2007  -10.56 (228.3)  -3260.0** (1270.0) 

2008  382.9 (320.3)  -6942.2*** (1692.6) 

2009  -133.5 (646.3)  -10825.6*** (2501.6) 

2010  -460.7 (317.7)  -3748.0* (2173.0) 

2011  -554.5 (363.2)  -3683.3* (2363.2) 

2012  -75.46 (236.1)  -3658.9** (1509.5) 

2013  786.5*** (224.6)  -2603.2 (1331.2) 

2014  590.2 (577.0)  -10783.4*** (1427.4) 

2015  255.6 (228.0)  -3412.6** (1150.5) 

2016  606.7*** (185.5)  -7893.2*** (1132.3) 

2017  353.1** (158.1)  -90.00 (1327.5) 

2018  213.5 (222.7)  290.5 (1450.5) 

2019  406.6** (202.2)  -3785.3** (1392.1) 

2020  -120.3 (166.5)  -6035.4*** (1052.9) 

2021  -89.60 (242.0)  -4361.8*** (1493.5) 

2022  427.6* (242.6)  -5876.6*** (1365.5) 

National Sample   194.9* (106.5)   -841.8 (620.4) 
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(c) Forestry farms  

Independent Variables  Carbon sequestration  (log)  Soil Moisture Deficit (mm) 

Region  Beta Std. errors    Beta Std. errors   

2010  -1.122 (1.669)  -5034.2 (6034.6) 

2011  -0.00589 (1.614)  298.9 (7587.2) 

2012  2.910 (1.844)  -6009.5 (5900.1) 

2013  1.195 (0.986)  -3234.7 (5103.3) 

2014  -1.000 (1.666)  -3472.1 (5404.4) 

2015  0.0262 (1.090)  -12593.9** (5695.5) 

2016  -4.785*** (1.531)  -16989.3*** (5442.1) 

2017  -0.348 (1.519)  -3032.1 (6048.6) 

2018  -1.122 (1.364)  2189.0 (6663.0) 

National Sample   -0.709 (1.669)   -8988.1 (3702.3) 
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Appendix S9.  The association of yearly variation in water-carbon effects with economic 

outcomes.  

(a) Dairy farms  

 

(b) Sheep and beef farms  
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Appendix S10.  Exclusion of adverse years (Covid 2019, GFC, and Drought)  

(a) Dairy farms  

Subset   Dairy farms  

Sample 

 

Original 

sample   

Exclude 

Covid years  

Exclude 

GFC 

Exclude 2013 

Drought year 

Exclude all 

these years 

Estimation Model  Full FE  Full FE  Full FE  Full FE  Full FE  

Dry Matter (log)  560.1*** 515.7*** 625.4*** 615.4*** 660.0*** 

   (112.2) (115.6) (119.4) (121.4) (137.6) 

Soil Moisture Deficit (mm)  -4868.9*** -5326.3*** -4908.2*** -4910.8*** -5444.6*** 

   (896.8) (961.1) (930.7) (927.4) (1048.1) 

Number of observations  62,712 57,591 58,287 58,818 49,272 

Adjusted R2  20.5% 21.3% 20.1% 0.215 0.221 

Intraclass correlation coefficient  0.829 0.962 0.844 0.833 0.961 

 

(b) Sheep and beef farms  

Subset    Sheep and beef  farms   

Sample 

 
Original 

sample   

Exclude 

Covid years  

Exclude 

GFC 

Exclude 2013 

Drought year 

Exclude all 

these years 

Estimation Model  Full FE  Full FE  Full FE  Full FE  Full FE  

Dry Matter (log)  191.9* 221.7* 166.0 172.4 154.4 

   (106.6) (114.5) (109.2) (112.4) (125.8) 

Soil Moisture Deficit (mm)  -841.8 -860.9 -775.3 -1003.2 -963.4 

   (620.5) (667.1) (632.8) (639.2) (707.8) 

Number of observations  136,001 123,414 127,366 127,441 106,219 

Adjusted R2  2.1% 1.9% 2.2% 2.0% 2.3% 

Intraclass correlation coefficient  0.771 0.765 0.797 0.771 0.793 

 

(c) Forestry farms  

Subset  Forestry farms  

Sample  

 

Original 

sample   

Exclude 

Covid years  

Exclude 

GFC 

Exclude 2013 

Drought year 

Exclude all 

these years 

Estimation Model  Full FE  Full FE  Full FE  Full FE  Full FE  

NEP (gCm2)   -0.709 -0.709 -0.709 -0.649 -0.458 

   (0.531) (0.531) (0.531) (0.570) (0.951) 

Soil Moisture Deficit (mm)  -6038.7 -6038.7 -6038.7 -6175.4 6008.8 

   (3702.3) (3702.3) (3702.3) (3879.0) (6244.5) 

Number of observations  8,196 8,196 8,199 7,815 4,824 

Adjusted R2  3.4% 3.4% 3.4% 3.3% 2.9% 

Intraclass correlation coefficient  0.738 0.738 0.738 0.733 0.958 
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Appendix S11.  Regression results with inclusion of groundwater  

This table presents estimates of the effect of groundwater on farm-level profit. Controls include geographical/agroclimatic attributes, farm characteristics, land use and farm practice, and time fixed 

effect, region and farm fixed effects. To conserve space, we report the point estimates and the standard errors (in parentheses) of the main variables of interest only. Heteroscedasticity robust standard 

errors clustered at farm-level are reported in parentheses. Number of observations and adjusted R2 are reported for all specifications. Especially for FE model, we also report Intraclass correlation 

coefficient which describes how much of the variation in the outcome variable is due to differences across farms, as opposed to changes over time within each farm. * p<0.1, ** p<0.05, *** p<0.01. 

Dependent Variable: Taxable profit per ha  Dairy farms  Sheep and beef farms  Forestry farms 

Column  (1)  (1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10)  (11)  

Estimation Model  Full FE  Full FE  Full FE   Full FE  Full FE  Full FE   Full FE  Full FE  Full FE  

Carbon-Water Cycle                   

Dry Matter (log)  560.1*** 156.1 154.7  191.9* 77.13 194.6*       

   (112.2) (124.0) (124.8)  (106.6) (144.2) (106.9)       

NEP (gCm2)            -0.709 0.137 0.144 

            (0.531) (0.677) (0.676) 

Soil Moisture Deficit (mm)  -4868.9*** -4292.8*** -4299.6***  -841.8 -812.4 -830.2  -6038.7 5005.86 4611.1 

   (896.8) (1346.8) (1347.0)  (620.5) (1029.1) (619.9)  (3702.3) (5996.7) (6018.4) 

Groundwater recharge (mm)     -0.229** -0.229**   0.151 0.151    -0.726 -0.777 

     (0.0931) (0.0932)   (0.103) (0.103)     (0.433) (0.928) 

Groundwater table depth (mbg)     3.179     3.542     -24.87 

      (3.335)     (2.585)     (31.23) 

Number of observations  62,712 30,762 30,762  136,001 75,618 63,836  8,196 2,818 2,818 

Adjusted R2  20.5% 17.5% 17.5%  2.1% 1.6% 1.6%  3.4% 3.7% 3.6% 

Intraclass correlation coefficient  0.829 0.925 0.925  0.771 0.771 0.768  0.829 0.865 0.874 
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Appendix S12.  Regression results before and after 2013  

This table presents estimates of the water-carbon effects on farm-level profit before and after 2013. Controls include geographical/agroclimatic attributes, farm characteristics, land use 

and farm practice, and time fixed effect, region and farm fixed effects. To conserve space, we report the point estimates and the standard errors (in parentheses) of the main variables of 

interest only. Heteroscedasticity robust standard errors clustered at farm-level are reported in parentheses. Number of observations and adjusted R2 are reported for all specifications. 

Especially for FE model, we also report Intraclass correlation coefficient which describes how much of the variation in the outcome variable is due to differences across farms, as opposed 

to changes over time within each farm. * p<0.1, ** p<0.05, *** p<0.01. 

Subset   Dairy farms  Sheep and beef farms  Forestry farms  

Column  (1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)  (9)  (10)  (11)  (12)  

Estimation Model  Full sample 2002-2012 2013-2023  Full sample 2002-2012 2013-2023  Full sample 2002-2012 2013-2023 

Dry Matter (log)  560.1*** 268.5* 956.4***  191.9* 29.22 428.1**       

   (112.2) (143.7) (172.8)  (106.6) (153.1) (169.1)       

NEP (gCm2)  
 

    
 

   
 

-0.709 -1.096 -0.896 

       
 

   
 (0.531) (0.464) (0.639) 

Soil Moisture Deficit (mm)  -4868.9*** -842.1 -6774.0***  -841.8 -1523 -464.8  -6038.7 2387.47 -7163.1* 

   (896.8) (1392.6) (1238.8)  (620.5) (1126.8) (777.6)  (3702.3) (10940.3) (4306.5) 

       
 

   
      

Number of observations  62,712 23,352 39,360  136,001 49,848 86,153   8,196 1,294 6,903 

Adjusted R2  20.5% 16.0% 25.1%  2.1% 1.3% 2.0%  3.4% 3.1% 3.1% 

Intraclass correlation coefficient  0.829 0.653 0.938  0.771 0.787 0.938  0.829 0.800 0.938 

 

 


