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Abstract 8 

Purpose- This paper examines how natural enemies, as ecological control agents, 9 

influence farmers’ pesticide use decisions, and how this effect is conditioned by farmers’ 10 

cognitive understanding of pest–enemy dynamics and their risk attitudes. 11 

Design/methodology/approach- Drawing on original data from 327 pear farmers in 12 

three of China’s major producing provinces (Hebei, Shandong, and Hubei), this study 13 

integrates three data sources: ecological monitoring of orchard level predator 14 

populations, incentivized experiments on farmer risk preferences, and structured 15 

household surveys. Interaction models are estimated to assess how farmers’ cognition 16 

moderates the relationship between natural enemy density and pesticide use, measured 17 

in terms of both expenditure and spraying frequency. 18 

Findings- Results show that farmers with greater ecological awareness, specifically, 19 

better recognition of pests, natural enemies, and their interrelations apply pesticides less 20 

frequently and at lower cost. This cost reducing effect of cognition is significantly 21 

amplified under higher natural enemy densities, suggesting a synergistic relationship 22 

between ecological assets and behavioral responses. In contrast, farmers with higher 23 

risk aversion tend to spray more often, though not necessarily at greater expense, 24 

indicating a quantity-over-quality behavioral pattern in risk management. 25 

Originality/value- This study makes several novel contributions. First, it moves 26 

beyond perception based proxies by incorporating field-measured predator densities 27 

into behavioral modeling. Second, it identifies a micro-level mechanism whereby 28 

ecological conditions and farmer cognition jointly shape input behavior. Third, it 29 



highlights how natural enemies are underutilized in current farmer decision-making due 30 

to low awareness, providing concrete evidence for targeting ecological extension 31 

services. The findings have practical relevance for advancing sustainable pest control 32 

in perennial systems such as orchards and for promoting nature-based solutions in 33 

developing country contexts. 34 
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1. Introduction 37 

Excessive reliance on chemical pesticides has become a major challenge in modern 38 

agriculture, especially in high-value crops like fruits and vegetables. Although 39 

pesticides are essential for controlling pests and diseases, their intensive application has 40 

resulted in severe ecological degradation, higher production costs, and mounting food 41 

safety risks ((Liu and Huang, 2013; Munir et al., 2024a)). In fruit production, pesticide 42 

intensity is estimated to be 7.7 times that of staple crops1, and limited post-harvest 43 

processing increases the likelihood of residues entering the food chain, thereby 44 

elevating risks of foodborne exposure and public health concerns (Munir et al., 2024b; 45 

Wahab et al., 2022). Broad-spectrum insecticides further compound the problem by 46 

killing not only pests but also beneficial organisms, notably natural enemies that help 47 

regulate pest populations(Wilson, 2012). This disrupts ecological balance, weakens the 48 

resilience of agroecosystems, and accelerates biodiversity loss(Pimentel et al., 1992). 49 

Additionally, pesticide overuse contributes to non-point source pollution and poses 50 

long-term threats to environmental and human health (Goulson, 2014; Landrigan et al., 51 

2018; Tang et al., 2021; Zhang et al., 2015). These challenges underscore the urgent 52 

need for more sustainable, ecology-based pest management strategies, particularly for 53 

high-value crops, where chemical dependence is excessive and the potential of natural 54 

enemies remains largely underutilized. 55 

Pesticide use is also a behavioral response to production risk. In the face of uncertainty, 56 

risk averse farmers often overapply pesticides as a precautionary measure (Ellis, 1993; 57 

 

1 According to the National Bureau of Statistics (2025), the average pesticide expenditure per mu in 2023 was 422.5 

CNY for orchards, 191.5 CNY for vegetables, and 54.8 CNY for grain crops. 



Liu and Huang, 2013; Mi et al., 2012). This pattern is especially common in developing 58 

countries where smallholders lack effective risk transfer mechanisms. In addition to 59 

risk preferences, farmers’ cognitive abilities, particularly their knowledge of pest 60 

ecology and pesticide use are critical determinants of pesticide behavior. Studies show 61 

that farmers with higher ecological cognition apply pesticides more judiciously(Chen 62 

et al., 2013; Grogan, 2014). Other factors such as farm size, pesticide prices, access to 63 

extension services, and pest pressure also influence farmers’ decisions (Chen et al., 64 

2013; Liu and Huang, 2013; Mi et al., 2012; Pemsl et al., 2005; Zhang and Swinton, 65 

2012). However, most existing studies rely on generalized proxies for cognition, which 66 

limits the precision of empirical insights. 67 

Natural enemies are a vital part of agricultural ecosystems and, when properly utilized, 68 

can help reduce pesticide dependence through ecological pest suppression. A growing 69 

body of natural science and economic research has confirmed the ecological and 70 

economic value of natural enemies in pest control (Gallardo et al., 2016; Zhang and 71 

Swinton, 2009, 2012). Yet, most assessments are based on experimental plots, 72 

biological models, or hypothetical scenarios, often failing to incorporate farmers’ 73 

behavioral responses or heterogeneous field conditions (Huang et al., 2018). 74 

Consequently, the value of natural enemies remains underappreciated by farmers and 75 

is rarely factored into their pest management decisions. 76 

This study seeks to bridge the gap between ecological pest control potential and farmers’ 77 

pesticide behavior by examining how natural enemy density and farmers’ ecological 78 

cognition jointly influence pesticide use at the micro level. Drawing on unique data 79 

from China’s main pear-producing regions, we integrate ecological field monitoring, 80 

household surveys, and behavioral modeling to quantify how natural enemies affect 81 

pesticide application costs and frequency, and how these effects are moderated by 82 

farmers’ knowledge and risk preferences. By explicitly incorporating natural enemies 83 

into farmers’ decision-making models and considering behavioral heterogeneity, this 84 

paper contributes to the literature on sustainable agriculture in three key ways. First, it 85 

provides rare empirical evidence of how the presence of natural enemies shapes real-86 

world pesticide behavior rather than relying on simulation-based estimates. Second, it 87 

constructs a fine-grained measure of farmer cognition based on field surveys and pest 88 

identification tests rather than relying on coarse proxies. Third, it highlights the 89 

behavioral conditions under which natural enemies can meaningfully reduce pesticide 90 



reliance, offering new insights into the role of cognition and risk attitudes in ecological 91 

input adoption. 92 

The remainder of the paper is organized as follows: Section 2 presents the theoretical 93 

framework and research design; Section 3 outlines the methodology and empirical 94 

model; Section 4 describes the data and sample; Section 5 reports the empirical results; 95 

and Section 6 concludes with policy implications. 96 

2. Theoretical Framework and Research Design 97 

2.1 Farmers’ Cognitive Awareness and Pesticide Use 98 

Farmers’ understanding of agricultural pests and their natural enemies plays a critical 99 

role in shaping pesticide use behavior. Cognitive awareness influences how farmers 100 

perceive the threat of pests, the effectiveness of control strategies, and the potential 101 

value of natural enemies. Studies have shown that higher farmer knowledge is 102 

associated with more rational and targeted pesticide application, reducing both overuse 103 

and misuse (Chen et al., 2013; Grogan, 2014). In particular, awareness of the ecological 104 

interactions between pests and predators is essential for internalizing the benefits of 105 

natural enemies. However, existing literature often adopts a generalized approach to 106 

cognition, lacking specific assessments of farmers’ ability to recognize pest–natural 107 

enemy dynamics. This study contributes to the literature by incorporating a detailed 108 

cognition index based on farmers’ recognition of orchard insects and understanding of 109 

their ecological roles. Based on this, we propose 110 

 Hypothesis 1: Farmers with higher cognitive awareness of pests and natural enemies 111 

are more likely to reduce pesticide use. 112 

2.2 Farmers’ Risk Attitudes and Pesticide Use 113 

Pesticide use also reflects farmers’ behavioral responses to production uncertainty. In 114 

environments with weak insurance coverage and limited public risk mitigation 115 

mechanisms, farmers often rely on pesticides as a form of production protection. The 116 

literature suggests that risk-averse farmers tend to overapply pesticides to avoid the 117 

uncertain consequences of pest damage (Ellis, 1993; Liu and Huang, 2013; Mi et al., 118 

2012). While this behavior may seem cost inefficient from an input optimization 119 

perspective, it aligns with risk minimization strategies. This psychological dimension 120 

of production behavior is particularly relevant in the context of pest outbreaks, which 121 

are difficult to predict and manage. Farmers with higher degrees of risk aversion are 122 



more likely to increase application frequency or dosage to feel secure about yield 123 

outcomes. Therefore, we propose  124 

Hypothesis 2: Farmers with higher levels of risk aversion are more likely to apply 125 

pesticides more frequently, regardless of ecological pest control conditions. 126 

2.3 Moderating Role of Natural Enemy  127 

Natural enemies represent a vital biological control force in orchard ecosystems, 128 

offering a cost-effective and environmentally sound alternative to chemical 129 

pesticides(Huang et al., 2018; Letourneau et al., 2009; Zhang and Swinton, 2012). The 130 

presence of natural enemies can suppress pest populations and thus reduce the need for 131 

chemical inputs (Bell et al., 2016; Letourneau et al., 2009). However, their actual 132 

influence on pesticide use depends on whether farmers recognize and respond to their 133 

ecological function. The role of natural enemies is not independent of farmer cognition. 134 

Even when enemy populations are ecologically sufficient, their pest control potential 135 

may be ignored or underutilized if farmers lack the knowledge to perceive and trust 136 

their effectiveness. Thus, the interplay between cognition and enemy density is key. 137 

Therefore, we propose Hypothesis 3: Natural enemy density positively moderates the 138 

relationship between farmer cognition and pesticide use. 139 

2.4 Proxy Strategy for Natural Enemy Population Density  140 

A key empirical challenge is the potential endogeneity in measuring natural enemy 141 

density, especially if current pesticide use has already affected local enemy populations. 142 

To mitigate this, the study adopts a proxy based strategy. Instead of directly measuring 143 

natural enemies in each farmer’s plot, population densities are derived from nearby 144 

organic or green-certified orchards. These reference orchards, managed without 145 

chemical pesticides in accordance with China’s “green production” standards, reflect 146 

stable agroecological baselines. Since they are minimally affected by the sampled 147 

farmer’s own practices, they offer a credible estimation of regional natural enemy 148 

densities. Monitoring locations were chosen to be as close as possible to the surveyed 149 

farmers’ orchards, ideally adjacent, to ensure ecological comparability. This strategy 150 

reduces simultaneity bias and improves the internal validity of the empirical model by 151 

treating natural enemy density as an exogenous ecological condition rather than an 152 

outcome of farmer decisions. 153 



Figure 1 summarizes the conceptual framework of this study. It illustrates how natural 154 

enemy density, as an ecological input, influences farmers’ pesticide use behavior 155 

through two behavioral mediators: cognitive awareness and risk attitudes. Farmers with 156 

greater ecological cognition are more likely to recognize the pest suppressing function 157 

of natural enemies and reduce pesticide application accordingly. Risk averse farmers, 158 

by contrast, tend to overapply pesticides to guard against uncertainty. The effectiveness 159 

of natural enemies in reducing pesticide use is conditional on farmers’ awareness, and 160 

their moderating effect becomes more salient when enemy density is within a viable 161 

range. This framework integrates ecological, behavioral, and economic dimensions to 162 

guide the empirical analysis and hypothesis testing.  163 

 164 

Figure 1. Framework for Natural Enemies and Farmers’ Pesticide Application Behavior. 165 

3. Methodology 166 

3.1 Econometric Model 167 

Building on the theoretical framework, we specify the following econometric models 168 

to estimate the determinants of pesticide application cost and frequency: 169 

											𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑐𝑜𝑠𝑡 = 𝑎! + 𝑎"	𝑟𝑖𝑠𝑘 + 𝑎$𝑒𝑛𝑒𝑚𝑦 + 𝑎%𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 170 

																																			+∑ 𝑏&𝑋&'
&(" + 𝑎)𝑒𝑛𝑒𝑚𝑦 ∗ 𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 + 𝜇              （1） 171 

In this model, the dependent variable 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑐𝑜𝑠𝑡  represents the pesticide 172 

application cost per mu. The variable 𝑟𝑖𝑠𝑘 denotes the farmer’s degree of risk aversion; 173 

𝑒𝑛𝑒𝑚𝑦  measures the population density of natural enemies in pear orchards; 174 

𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 captures the farmer’s level of knowledge regarding pests, natural enemies, 175 

and their interactions. The interaction term 𝑒𝑛𝑒𝑚𝑦 ∗ 𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛  examines how 176 
natural enemies and farmer cognition jointly influence pesticide use behavior.  177 



𝑋& 	denotes a vector of control variables including orchard disaster status, pest incidence, 178 
degree of non-agricultural employment, farmer’s age, education level, health condition, 179 

orchard size, and regional dummies. 𝜇 is the random error term. 𝑎! is the intercept, 180 

and 𝑎" through 𝑎) , and 𝑏& are the parameters to be estimated. 181 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑡𝑖𝑚𝑒𝑠 = a! + a"	𝑟𝑖𝑠𝑘 + a$𝑒𝑛𝑒𝑚𝑦 + a%𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛	182 

+∑ 𝑏&𝑋&*
+(" + a)𝑒𝑛𝑒𝑚𝑦 ∗ 𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 + µ																					 (2) 183 

In this model, the dependent variable 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑡𝑖𝑚𝑒𝑠 indicates the number of pesticide 184 
applications. Given the diversity of pesticide types and the difficulty of collecting 185 

precise application quantities by type, average pesticide costs are used to reflect usage 186 

intensity. Additionally, pesticide application frequency serves as a proxy for pesticide 187 

usage volume, providing further insight into farmers' pesticide application behavior. 188 

3.2 Measurement of Risk Attitude 189 

Farmers’ risk attitudes are key psychological traits that influence pesticide application 190 

decisions under uncertainty. In this study, we employ a multiple price list (MPL) lottery 191 

experiment to measure the degree of risk aversion, following the method proposed by 192 

Holt and Laury (2002). The experiment is based on a constant relative risk aversion 193 

(CRRA) utility framework, and individual risk coefficients are estimated according to 194 

the switching point between safe and risky lottery options. 195 

To maintain brevity, the detailed design of the experiment, the specification of the 196 

utility function, and the classification of risk preferences are not repeated here. For a 197 

full account of the procedure and methodology, please refer to Section 4.1 in our 198 

previous paper (Liu et al., 2022). The complete set of experimental tables and 199 

classifications is provided in the Appendix of this paper. 200 

3.3 Measurement of Farmers’ Cognition 201 

Farmers’ cognitive levels were assessed through responses to four targeted questions 202 

designed to evaluate their ability to identify pear orchard pests and natural enemies and 203 

understand their ecological relationships:  204 

1) Does an increase in natural enemy populations contribute to pest control? (Options: 205 

①  Not clear; ②  Agree; ③  Strongly agree) 2) How many pest species in the 206 

provided pear orchard images can you identify? (Correct identification of pest names 207 

required for scoring). 3)Which of the following are not pear orchard pests? (Options: 208 



①  Coccinellidae (lady beetles); ②  Grapholita molesta (oriental fruit moth); ③ 209 

Cacopsylla pyricola (pear psylla); ④  Aphididae (aphids); ⑤  Phyllonorycter 210 

ringoniella (pear leaf miner); ⑥  Syrphidae (hoverflies); ⑦  Nabis spp. (damsel 211 

bugs); ⑧ Phyllotreta spp. (flea beetles); ⑨ Trichogramma spp. (parasitic wasps); 212 

⑩  Chrysopidae (green lacewings); ⑪ Araneae (spiders); ⑫ Not clear). 4)Can 213 

Trichogramma spp. (parasitic wasps) control Grapholita molesta (oriental fruit moth) 214 

in pear orchards? 215 

Questions 1 and 4 assess farmers’ understanding of the ecological relationship between 216 

natural enemies and pests, while Questions 2 and 3 evaluate their ability to identify 217 

pests and natural enemies, respectively. Each question was assigned a weight based on 218 

difficulty and importance (2, 4, 2, and 1 points, respectively), with the total score 219 

serving as a composite measure of farmers’ cognitive level. 220 

3.4 Observation of Insect Population Density in Orchards 221 

To accurately assess the ecological conditions of each study site, we conducted 222 

standardized field observations of pest and natural enemy populations in pear orchards. 223 

In each sampled village, one representative orchard was selected as the insect 224 

monitoring site. 225 

From July to September 2020, insect population data were collected following plant 226 

protection protocols, using yellow sticky traps as the primary observation method 227 

(Krysan and Horton, 1991). In each selected orchard, a one-mu (0.067-hectare) plot 228 

was demarcated, with five monitoring points (one central and four in cardinal 229 

directions). Yellow sticky traps were placed at approximately 1.5 meters above ground 230 

on pear trees, with a density of five traps per mu, replaced biweekly. Graduate students 231 

trained in plant protection recorded the counts of natural enemies and pests on each trap. 232 

To account for potential seasonal variations in insect activity, monitoring was 233 

conducted three times over the study period, and the average of these observations was 234 

used in the subsequent econometric analysis. The primary predatory natural enemies 235 

observed included Coccinellidae (lady beetles), Chrysopidae (green lacewings), 236 

Araneae (spiders), Anthocoridae (minute pirate bugs), and Syrphidae (hoverflies). The 237 

major pests identified were Aphididae (aphids), Cicadellidae (leafhoppers), Contarinia 238 

pyrivora (pear gall midge), Cacopsylla pyricola (pear psylla), and Grapholita molesta 239 

(oriental fruit moth).  240 



 241 

Figure 2. Relationship between predatory natural enemy and major pest population Densities 242 

The observed relationship between predator and pest densities is depicted in Figure 2. 243 

As the density of predatory natural enemies increased, the population of major pests 244 

declined, providing empirical support for the biological control capacity of natural 245 

enemies. This pattern is consistent with established predator–prey dynamics in 246 

ecological theory and highlights the potential for natural enemies to mitigate pesticide 247 

usage and reduce production costs. 248 

4. Data source and sample description 249 

4.1 Data Sources 250 

 The data used in this study were collected by the Pear Industry Technology System in 251 

2020 and consist of three major components: field observations of natural enemy 252 

populations in pear orchards, a structured household survey of pear growers, and a risk 253 

elicitation experiment. To ensure the design was grounded in production realities, a 254 

pilot investigation was conducted in Hebei Province in June 2019. The pilot helped 255 

assess key pest–enemy dynamics in orchards and gather preliminary data on farmers’ 256 

input–output behavior, which informed the construction of the risk experiment. 257 

The risk attitude of farmers was elicited through a lottery-based multiple price list 258 

experiment. The design followed Holt and Laury (2002), but was tailored to local 259 

conditions by adjusting payoff levels based on the average net returns and pesticide 260 

expenditure data collected in the 2019 pilot study. To mitigate hypothetical bias, 261 

enumerators conducted a “cheap talk” script(Cummings and Laura, 1999; List, 2001)  262 



with respondents before the experiment, encouraging them to align their choices with 263 

real-life production decisions. 264 

The formal survey was implemented between October and December 2020 in the three 265 

major pear-producing provinces of Hebei, Shandong, and Hubei. A stratified random 266 

sampling approach was used to select 327 farm households from 32 villages (16 in 267 

Hebei, 8 in Shandong, and 8 in Hubei), with a sampling ratio of 2:1:1 to reflect Hebei’s 268 

status as China’s largest pear-producing province (accounting for approximately 20% 269 

of national output). Within each village, 10 households were randomly chosen for face-270 

to-face interviews conducted with the primary decision-maker. Each interview lasted 271 

30 to 60 minutes and was conducted at the farmer’s home or local village office. 272 

The survey instrument collected information on demographic characteristics, 273 

production practices, pest control behavior, cost and revenue patterns across production 274 

stages, and farmers’ knowledge and perception of pest-natural enemy dynamics. All 275 

interviews were administered by trained graduate students with backgrounds in 276 

agricultural economics to ensure data consistency and accuracy. After completing the 277 

survey, respondents were invited to participate in the risk experiment. Of the 327 278 

responses collected, 302 provided complete and valid information on pesticide 279 

application and were retained for empirical analysis. 280 

4.2 Variables and Descriptive Statistics 281 

4.2.1 Descriptive statistics 282 

The definition and descriptive statistics for the variables used in the empirical analysis 283 

are presented in Table 1. The independent variables were selected based on a review of 284 

previous studies on the determinants of farmers’ pesticide use behavior (Bell et al., 285 

2016; Chen et al., 2013; Liu and Huang, 2013; Zhu and Wang, 2021).  286 

  287 



Table 1 Variable Definitions and Descriptive Statistics 288 

Variable Definition Mean SD Min Max
值 Dependent variables 

Pesticide cost Pesticide application cost per mu 
(CNY/mu) 

429.867 262.72 0 1600 

Pesticide 
frequency 

Number of pesticide applications 
during a growing cycle 

7.980 2.955 1 15 

Key independent variables 
Natural enemy 
density 
 
 

Population density of predatory 
natural enemies (individuals per 
sticky trap) 

8.483 6.49 2 37 

Farmers’ 
Cognition 

Farmer cognition score on pests, 
natural enemies, and their 
interactions (0–9) 

3.771 2.358 0 9 

Risk attitude Coefficient of risk aversion .734 .754 -.87 1.41 
Control variables      

Age Age of the farmer (years) 55.179 8.919 30 76 

Education Years of formal schooling 7.964 3.171 0 16 

Health status 
1 = Good; 2 = Fair (ill but not 
affecting work); 3 = Poor; 4 = 
Multiple chronic illnesses 

1.219 .514 0 3 

Poverty status 
1 = Registered as poor household; 0 
= Otherwise 

.073 .26 0 1 

Cooperative 
membership 

1 = Member of an agricultural 
cooperative; 0 = Not a member 

.252 .435 0 1 

Agri-income share 
Share of agricultural income in total 
household income (%) 

0.606 0.352 0.001 1 

Orchard size Size of pear orchard (mu) 6.361 14.147 .68 214 

Pesticide 
adjustment 

Whether the farmer adjusts pesticide 
use based on field conditions (1 = 
Yes; 0 = No) 

.606 .489 0 1 

Disaster 
occurrence 

Whether the orchard suffered from 
natural disasters in the current year (1 
= Yes; 0 = No) 

.762 .427 0 1 

Pest severity 
Severity of pest/disease outbreaks (1 
= Very low; 5 = Very severe) 

3.387 1.126 1 5 

N=302 

According to Table 1, the average pesticide expenditure per mu is 429.9 CNY, with 289 

considerable variation across farmers. The maximum cost reaches as high as 1,600 290 



CNY per mu, indicating significant heterogeneity in pesticide spending behavior. 291 

Similarly, pesticide application frequency also shows substantial dispersion: farmers 292 

spray an average of eight times during a growing season, with a range from 1 to 15 293 

times, reflecting diverse pest control practices. The average population density of 294 

predatory natural enemies is approximately 8 individuals per sticky trap, but this figure 295 

varies widely, from as low as 2 to as high as 37 per trap. Farmers’ recognition of orchard 296 

insects and their understanding of pest–natural enemy interactions appear to be limited， 297 

the average cognition score is only 3.77 out of 9. This low level of awareness may 298 

influence pesticide use behavior and increase pest control costs. Moreover, the lack of 299 

understanding regarding the ecological role of natural enemies may hinder their 300 

effectiveness in biological pest suppression. 301 

The surveyed farmers span a wide age range from 30 to 76 years old with a mean age 302 

of 55, revealing a trend toward an aging labor force. Educational attainment is generally 303 

low among respondents, averaging only 8 years of schooling. Around 82% of farmers 304 

reported being in good health and able to participate in routine agricultural activities, 305 

whereas only 4.3% indicated that poor health significantly affected their daily life and 306 

farming work. Very few respondents were officially registered as low-income 307 

households. About 25% of farmers reported being members of agricultural cooperatives. 308 

On average, orchard size is 6.36 mu, but landholding varies greatly, ranging from 0.68 309 

mu to as much as 214 mu. Approximately 60% of respondents reported adjusting 310 

pesticide use based on real-time field observations of pest and disease conditions. This 311 

implies that nearly 40% of farmers follow pesticide labels or rely on external advice, 312 

rather than adapting application to field-specific pest severity. 313 

Furthermore, 76.2% of respondents indicated that their orchards experienced some 314 

degree of natural disaster in the current year. The severity of pest and disease incidence 315 

also varied across households. Regarding household income structure, agricultural 316 

income accounts for an average of 60.6% of total household income, though the 317 

proportion ranges widely from near-zero to full dependence on farming. This indicates 318 

that while agriculture remains a central income source for many households, others may 319 

rely significantly on off-farm employment, potentially influencing their production 320 

behavior and input decisions. 321 

4.2.2 Farmers’ knowledge of insect species and ecological interactions in the orchard 322 



Survey results (Figure 3) indicate that 73.6% of farmers either believe natural enemies 323 

do not suppress pests or are unsure of their role, with only approximately 25% 324 

recognizing the biological control potential of natural enemies. Trichogramma spp. 325 

(parasitic wasps), a widely used natural enemy capable of parasitizing multiple pest 326 

species, including Grapholita molesta (oriental fruit moth), is commonly employed in 327 

large-scale biological control due to its mass-rearing potential. However, only 10.56% 328 

of farmers were aware of the role of Trichogramma spp. in controlling Grapholita 329 

molesta, with nearly 90% lacking knowledge of the predator–prey dynamics between 330 

natural enemies and pests. These findings suggest that farmers’ awareness of the 331 

ecological relationship between natural enemies and pests is generally low, with only a 332 

small proportion recognizing their pest suppression potential. 333 

334 
Figure 3. Farmers’ Awareness of the Relationship Between Natural Enemies and Pests 335 

Table 2 summarizes farmers’ identification of common pear orchard pests and natural 336 

enemies. When presented with four common pest species, 22.44% of farmers 337 

demonstrated low identification ability, while nearly 80% could identify at least one 338 

pest, and over 50% recognized two or more pest species, indicating a moderate level of 339 

pest identification ability. In contrast, farmers’ ability to identify natural enemies was 340 

significantly limited: 34% could not identify any natural enemies, only 5% correctly 341 

identified three to four out of five natural enemy species, and 60% recognized only one 342 

to two natural enemies. This disparity suggests that farmers’ ability to identify natural 343 

enemies is considerably lower than their ability to identify pests. Consequently, farmers 344 



may struggle to utilize natural enemies for pest control and may mistakenly perceive 345 

natural enemies as pests, leading to increased pesticide application and overuse. 346 

Table 2. Farmers’ Identification of Pear Orchard Pests and Natural Enemies 347 

Pest 

Identification 

(Correct 

Count) 

Frequency Percentage（%） 

Natural Enemy 

Identification 

(Correct Count) 

Frequency 
Percentage

（%） 

0 68 22.44 0 104 34.32 

1 53 17.49 1 91 30.03 

2 57 18.81 2 92 30.36 

3 43 14.19 3 10 3.30 

4 82 27.06 4 6 1.98 

Total 303 100.00  303 100.00 

4.2.3 Descriptive analysis of risk preferences 348 

As shown in Table 3, the majority of farmers in the sample exhibit risk averse behavior, 349 

accounting for 76.23% of the total. In contrast, 13.89% and 9.88% of the farmers fall 350 

into the risk loving and risk neutral categories, respectively. Specifically, 129 351 

individuals are classified as “extremely risk averse,” making it the largest group，nearly 352 

40% of the sample，highlighting a strong aversion to risk among many farmers. The 353 

proportions of highly risk loving and risk loving farmers are relatively small, at 1.85% 354 

and 1.54%, respectively. This suggests that farmers’ risk attitudes are relatively 355 

polarized, most respondents tend to be either extremely risk loving or distinctly 356 

conservative (risk neutral or risk averse), with few cases falling into ambiguous or 357 

intermediate categories. Additionally, over one third of the sample is evenly distributed 358 

across classifications between risk neutrality and extreme risk aversion, making up a 359 

significant share of the total. 360 

  361 



 362 

 Table 3. Classification of sample farmers by relative risk aversion (RRA) 363 

Risk aversion classification Frequency(N=324) Percent(%) 
Highly risk loving 34 10.49 
Very risk loving 6 1.85 

Risk loving 5 1.54 
Risk neutral 32 9.88 

Slightly risk averse 36 11.11 
Risk averse 27 8.33 

Very risk averse 27 8.33 
Highly risk averse 28 8.64 

Stay in bed 129 39.81 

5 Empirical Results 364 

5.1 Analysis of Pesticide Application Cost 365 

Table 4 presents the regression results using pesticide application cost per mu as the 366 

dependent variable. Model (1) includes all core explanatory variables and control 367 

variables as a baseline specification. Given that the influence of natural enemies on 368 

farmers’ pesticide behavior operates through their cognitive perception, Model (2) 369 

incorporates an interaction term between farmer cognition and natural enemy density 370 

to assess the moderating effect. Without a clear understanding of the distinction 371 

between beneficial natural enemies and pests, farmers may misidentify predators as 372 

pests and increase pesticide use. Thus, both cognition and natural enemy variables, as 373 

well as their interaction, must be included in the estimation. 374 

  375 



 376 

Table 4. Estimation results on the effects of natural enemies on farmers’ pesticide costs 377 

Pesticide cost (per mu) 
Baseline Model（1） Interaction Model（2） 
Coef. Std. Err Coef. Coef. 

Natural enemy density 2.852 2.346 -5.509 4.282 
Farmers’ Cognition -4.852  6.369 -24.143** 10.426 
Cognition * Enemy density 
 
 

  2.391** 1.028 
Risk attitude 27.959 19.658 29.914 19.526 
Age -.411  1.766 -.229 1.754 
Education -6.313 4.74 -5.734 4.71 
Health status -31.264  29.457 -33.702 29.251 
Poverty status 56.185 57.159 76.917 57.418 
Cooperative membership 56.028 35.376 50.193 35.195 
Agri-income share -30.869 44.064 -30.78 43.727 
Orchard size -1.507 1.023 -1.351 1.017 
Pesticide adjustment 80.014** 32.382 83.762*** 32.176 
Disaster occurrence 4.135 38.857 3.623 38.561 
Pest severity 31.208** 13.459 29.126** 13.386 
Hebei (ref.) 0 . 0 . 
Shandong 208.378*** 38.374 207.839*** 38.082 
Hubei 63.824 40.848 64.882 40.539 
Constant 303.131** 126.564 365.175*** 128.398 
R-squared 0.161 

3.647 
0.000 
302 

0.176 
3.810 
0.000 
302 

F-test 
Prob>F 
Observations 
*** p<.01, ** p<.05, * p<.1 

 
Across both the baseline and the interaction models, the severity of pest and disease 378 

outbreaks in orchards has a significantly positive effect on pesticide costs. Farmers who 379 

adjust pesticide use based on field observations also tend to incur higher pesticide costs, 380 

indicating that responsive behavior to pest pressure leads to increased chemical inputs. 381 

Regional differences in pesticide expenditure are also evident: taking Hebei Province 382 

as the reference category, pear growers in Shandong have significantly higher pesticide 383 

application costs. Farmers’ risk aversion is positively associated with pesticide costs—384 

those who are more risk-averse tend to spend more on pesticide use—although this 385 

relationship is statistically insignificant. 386 

From Model (2), farmer cognition of orchard insects has a significant negative impact 387 

on pesticide application cost, indicating that improved understanding of insect roles 388 



reduces reliance on chemical control. The interaction between predator density and 389 

farmer cognition is positively significant, confirming a moderating effect higher 390 

densities of natural enemies amplify the cost-reducing impact of farmers’ better 391 

cognitive recognition. 392 

In this model, the key explanatory variable is the overall density of predatory natural 393 

enemies, including lady beetles, lacewings, spiders, mirid bugs, and syrphid flies. 394 

Given that these predators vary in prey preferences and effectiveness, we further isolate 395 

the most commonly observed predator lady beetles to test robustness. As shown in 396 

(Appendix Table 3), the main findings remain consistent, and the interaction term 397 

between lady beetle density and cognition is significant at the 1% level. The consistency 398 

between the two models demonstrates the robustness of the empirical results. 399 

5.2 Analysis of Pesticide Application Frequency 400 

Due to the wide variety of pesticides used by farmers and the difficulty of accurately 401 

capturing the quantities applied, especially given the large variation in pesticide prices, 402 

application costs may not fully reflect pesticide use. In contrast, the frequency of 403 

pesticide application better represents the actual usage intensity. To ensure the 404 

robustness of our findings, we replace the dependent variable with pesticide application 405 

frequency and reestimate the model. Model (1) presents the baseline specification, 406 

while Model (2) includes the interaction term between natural enemy density and 407 

farmer cognition. 408 

The estimation results are shown in Table 5. Farmers’ risk aversion has a significant 409 

positive effect on pesticide application frequency, the more risk averse the farmer, the 410 

more frequently they apply pesticides. The interaction term between natural enemy 411 

density and farmer cognition is also significantly positive, suggesting that higher 412 

predator density significantly moderates the effect of cognition on pesticide frequency. 413 

This finding is consistent with the previous results on pesticide application costs, 414 

confirming the joint effect of cognition and ecological factors in influencing pesticide 415 

behavior. In addition, participation in farmer cooperatives is positively associated with 416 

higher pesticide application frequency. Regional differences are also notable, compared 417 

to farmers in Hebei (the reference group), those in Shandong and Hubei exhibit 418 

significantly higher application frequencies. 419 

 420 



Table 5. Estimation results on the effects of natural enemies on pesticide application frequency 421 

Pesticide Frequency 
Baseline Model（1） Interaction Model（2） 
Coef. Std. Err Coef. Coef. 

Natural enemy density .42* .214 .439** .213 
Farmers’ Cognition .032 .026 -.049 .047 
Cognition * Enemy density 
 
 

-.048 .069 -.235** .114 
Risk attitude   .023** .011 
Age .024 .019 .026 .019 
Education -.038 .052 -.033 .051 
Health status .331 .321 .307 .32 
Poverty status -.025 .623 .177 .627 
Cooperative membership 1.206*** .386 1.15*** .385 
Agri-income share .108 .48 .109 .478 
Orchard size .003 .011 .004 .011 
Pesticide adjustment .252 .353 .289 .352 
Disaster occurrence .126 .424 .121 .421 
Pest severity .167 .147 .147 .146 
Hebei (ref.) 0 . 0 . 
Shandong 2.772*** .418 2.767*** .416 
Hubei 1.573*** .445 1.583*** .443 
Constant 3.911*** 1.38 4.514*** 1.403 
R-squared 0.211 

5.094 
0.000 
302 

0.223 
5.098 
0.000 
302 

F-test 
Prob>F 
Observations 
*** p<.01, ** p<.05, * p<.1 

 
To further examine the role of specific natural enemies, we re-estimate the model using 422 

lady beetle density alone as the key explanatory variable. As shown in (Appendix Table 423 

4), the results remain consistent with those of the main regression, supporting the 424 

robustness of our findings. 425 

5.3 Marginal Effects of Natural Enemies on Pesticide Application Costs 426 

The effect of natural enemies on farmers’ pesticide application behavior is mediated by 427 

their cognitive ability to identify field insects and understand the ecological relationship 428 

between pests and beneficial predators. Only when farmers are aware of the 429 

antagonistic relationship between natural enemies and pests—and can distinguish the 430 

two—can they leverage biological control to reduce pesticide costs. When all other 431 

variables in the pesticide cost model are held at their mean values, the marginal effect 432 



of natural enemies on pesticide costs changes with farmers’ cognition levels, as 433 

illustrated in Figure 4. 434 

 435 

Figure 4. Marginal change in pesticide costs by cognition level (at Mean natural enemy density) 436 

When the density of predatory natural enemies is fixed at the average level of 8.48 437 

individuals per sticky trap, higher cognition scores are associated with further 438 

reductions in pesticide costs. Specifically, increasing the cognition score by one point 439 

from the current average of 3.77 can reduce pesticide costs by approximately 3.9 CNY 440 

per mu. If a farmer’s cognition level reaches a high score of 9, pesticide costs could 441 

decrease by roughly 20 CNY per mu. These predictions are detailed in Table 6. 442 

Table 6. Predicted pesticide costs at varying cognition levels (Natural enemy density held at 443 

mean)  444 

Cognition Score Predicted Cost 
(CNY/mu) 

95% Confidence Interval 
3.77 433.878 405.915 461.841 
4.77 430.010 399.306 460.715 

9 413.650 342.497 484.803 

To test the robustness of the results, we replaced the aggregate predator density with 445 
the density of lady beetles, the most commonly observed predatory natural enemy as 446 

the core explanatory variable. The results in Table 7 confirm similar marginal trends. 447 

 448 

 449 

 450 

 451 



Table 7. Predicted pesticide costs at varying cognition levels (Lady beetle density held at mean) 452 

Cognition Score Predicted Cost (CNY/mu) Std. Error 
0 449.980 27.627 
1  445.963 22.448 
2  441.946 18.002 
3 437.929 14.958 
4  433.912 14.246 
5  429.895 16.177 
6  425.878 19.998 
7  421.861 24.853 
8  417.844 30.248 
9 413.827 35.941 

Cognitive ability plays a crucial moderating role in the marginal effect of natural 453 
enemies on pesticide costs. On average, each one-point increase in cognition score 454 

corresponds to a reduction of about 4 CNY per mu in pesticide costs. If farmers’ 455 

cognitive levels improve substantially, the cost savings could be considerable. 456 

In summary, the impact of natural enemies on pesticide use is contingent on farmers’ 457 

understanding of ecological interactions. If farmers remain poorly informed, increases 458 

in natural enemy populations may even raise pesticide costs due to misidentification. 459 

Only when cognitive levels reach a certain threshold can the pest suppression function 460 

of natural enemies be activated, thereby reducing pesticide reliance. Taking lady beetles 461 

as an example, when their population density is at the mean level, farmers with high 462 

cognition scores can lower their pesticide costs by up to 20 CNY per mu. Furthermore, 463 

when the initial population density of natural enemies is low, the marginal benefit from 464 

each additional individual can be particularly substantial. 465 

6 Conclusions and Policy Implications 466 

6.1 Conclusions 467 

This study introduces natural enemies as an ecological control factor into farmers’ 468 

pesticide application decision models. The empirical findings demonstrate that for 469 

natural enemies to effectively reduce pest pressure and pesticide use, farmers must first 470 

possess a sufficient level of cognition regarding both the identification of natural 471 

enemies and their ecological relationship with pests. Only under such cognitive 472 

conditions can natural enemies exert their pest suppression function and contribute to 473 

lowering pesticide costs. Field survey data from major pear-producing regions in China 474 



reveal that farmers’ recognition of orchard insects and their understanding of pest-475 

natural enemy dynamics remain generally low. The negative effect of farmers’ 476 

cognition on pesticide costs and application frequency is significantly moderated by the 477 

density of natural enemies, as farmers’ cognition improves, higher natural enemy 478 

density corresponds to lower per-mu pesticide costs and reduced spraying frequency. 479 

At the current average natural enemy density (approximately 8 individuals per sticky 480 

board), if a farmer’s cognition score improves from the average of 3.77 to 4.77, 481 

pesticide costs could decrease by around 5 CNY per mu. If cognition improves to a 482 

high level (score of 9), the cost savings could reach 26 CNY per mu. 483 

Furthermore, we find that most pear growers in the surveyed areas are risk-averse. Risk 484 

aversion has a significant positive effect on pesticide application frequency but no 485 

statistically significant effect on per-mu pesticide costs. This aligns with theoretical 486 

expectations and the findings of Huang et al. (2008). Risk averse farmers tend to apply 487 

pesticides more frequently in order to mitigate potential pest risks. However, their total 488 

pesticide expenditure does not increase significantly, potentially due to their preference 489 

for lower-cost pesticides. Because we lack detailed data on pesticide types and prices, 490 

this hypothesis warrants further empirical testing. 491 

Participation in farmer cooperatives is found to have a significant positive impact on 492 

pesticide application frequency. This is likely due to cooperatives’ centralized 493 

procurement of agricultural inputs, which lowers pesticide prices for member farmers 494 

and may encourage increased usage. Pesticide price, therefore, appears to have a strong 495 

inverse relationship with application volume, lower prices lead to higher usage. 496 

Significant regional differences are also observed. Compared to Hebei, pear growers in 497 

Shandong have significantly higher per-mu pesticide costs. In terms of application 498 

frequency, both Shandong and Hubei farmers spray more frequently than those in Hebei, 499 

likely due to regional variations in pest and disease occurrence. 500 

6.2 Policy Implications 501 

As an intrinsic biological factor in agroecosystems, natural enemies play a vital role in 502 

the control of native and invasive pests. Their density significantly moderates the 503 

relationship between farmers’ cognition and pesticide use. Farmers’ neglect or 504 

misperception of natural enemies is a major contributor to excessive pesticide 505 

application. Given the generally low level of farmer cognition regarding natural 506 



enemies and their pest-suppressive relationships, it is imperative to enhance training 507 

and education on pest control and beneficial insects.  508 

Incorporating natural enemies into farmers’ pest management decisions requires not 509 

only ecological presence but also cognitive capacity. At the current average density of 510 

natural enemies, improving farmer cognition can effectively reduce pesticide costs. 511 

However, due to the aging trend in the farming population and limited capacity to 512 

absorb new knowledge, grassroots extension services should actively diversify 513 

information channels. Strategies may include organizing regular field-based pest 514 

management workshops and providing in-field visual aids. Moreover, the supply of 515 

production-oriented services, such as timely pest forecasting and pest control guidance, 516 

should be expanded to strengthen farmers’ understanding and use of ecological control 517 

agents. 518 

Given the prevalent risk averse behavior of farmers, risk aversion significantly 519 

contributes to over application of pesticides. When confronted with uncertainty in pest 520 

control (e.g., timing, efficacy), farmers often rely on excessive pesticide use, resulting 521 

in deviations from economically optimal input levels, increased production costs, and 522 

disruption of ecological control dynamics. To address this, more accurate and 523 

accessible field pest monitoring systems should be established, complemented by 524 

technical advisory services. Additionally, optimizing agricultural insurance schemes 525 

could enhance farmers’ capacity to bear risk and reduce reliance on excessive chemical 526 

control. 527 

Over reliance on pesticides leads to escalating costs and long-term ecological harm as 528 

pests develop resistance over time. By enhancing both cognitive and technical 529 

capabilities, farmers can better leverage the natural regulatory power of beneficial 530 

insects, reducing dependence on chemical pesticides. This transition holds potential for 531 

long-term ecological sustainability and economic efficiency. 532 

 533 

 534 

 535 

 536 
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